51 research outputs found

    Ballistic Conductance in Oxidized Si Nanowires

    Full text link
    The influence of local oxidation in silicon nanowires on hole transport, and hence the effect of varying the oxidation state of silicon atoms at the wire surface, is studied using density functional theory in conjunction with a Green's function scattering method. For silicon nanowires with growth direction along [110] and diameters of a few nanometers, it is found that the introduction of oxygen bridging and back bonds does not significantly degrade hole transport for voltages up to several hundred millivolts relative to the valence band edge. As a result, the mean free paths are comparable to or longer than the wire lengths envisioned for transistor and other nanoelectronics applications. Transport along [100]-oriented nanowires is less favorable, thus providing an advantage in terms of hole mobilities for [110] nanowire orientations, as preferentially produced in some growth methods

    Determination of complex absorbing potentials from the electron self-energy

    Full text link
    The electronic conductance of a molecule making contact to electrodes is determined by the coupling of discrete molecular states to the continuum electrode density of states. Interactions between bound states and continua can be modeled exactly by using the (energy-dependent) self-energy, or approximately by using a complex potential. We discuss the relation between the two approaches and give a prescription for using the self-energy to construct an energy-independent, non-local, complex potential. We apply our scheme to studying single-electron transmission in an atomic chain, obtaining excellent agreement with the exact result. Our approach allows us to treat electron-reservoir couplings independent of single electron energies, allowing for the definition of a one-body operator suitable for inclusion into correlated electron transport calculations.Comment: 11 pages, 8 figures; to be published in the J. Chem. Phy

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Transport properties and electrical device characteristics with the TiMeS computational platform: application in silicon nanowires

    Get PDF
    Nanoelectronics requires the development of a priori technology evaluation for materials and device design that takes into account quantum physical effects and the explicit chemical nature at the atomic scale. Here, we present a cross-platform quantum transport computation tool. Using first-principles electronic structure, it allows for flexible and efficient calculations of materials transport properties and realistic device simulations to extract current-voltage and transfer characteristics. We apply this computational method to the calculation of the mean free path in silicon nanowires with dopant and surface oxygen impurities. The dependence of transport on basis set is established, with the optimized double zeta polarized basis giving a reasonable compromise between converged results and efficiency. The current-voltage characteristics of ultrascaled (3 nm length) nanowire-based transistors with p-i-p and p-n-p doping profiles are also investigated. It is found that charge self-consistency affects the device characteristics more significantly than the choice of the basis set. These devices yield source-drain tunneling currents in the range of 0.5 nA (p-n-p junction) to 2 nA (p-i-p junction), implying that junctioned transistor designs at these length scales would likely fail to keep carriers out of the channel in the off-state

    Independent particle descriptions of tunneling from a many-body perspective

    Full text link
    Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single particle states to the many-body current-carrying state is more important than energy minimization for defining single particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.Comment: 4+ pages, 4 figures; accepted to Phys. Rev. B Rapid Communication

    Magnetically controlled current flow in coupled-dot arrays

    Full text link
    Quantum transport through an open periodic array of up to five dots is investigated in the presence of a magnetic field. The device spectrum exhibits clear features of the band structure of the corresponding one-dimensional artificial crystal which evolves with varying field. A significant magnetically controlled current flow is induced with changes up to many orders of magnitude depending on temperature and material parameters. Our results put forward a simple design for measuring with current technology the magnetic subband formation of quasi one-dimensional Bloch electrons.Comment: 9 pages, 5 figure
    • …
    corecore