145 research outputs found

    Biomarkers of subclinical inflammation and increases in glycaemia, insulin resistance and beta-cell function in non-diabetic individuals: the Whitehall II study

    Get PDF
    Objective: Higher systemic levels of pro-inflammatory biomarkers and low adiponectin are associated with increased risk of type 2 diabetes, but their associations with changes in glycaemic deterioration before onset of diabetes are poorly understood. We aimed to study whether inflammation-related biomarkers are associated with 5-year changes in glucose and insulin, HbA1c, insulin sensitivity and beta-cell function before the diagnosis of type 2 diabetes and whether these associations may be bidirectional. Design and methods: We used multiple repeat measures (17 891 person-examinations from 7683 non-diabetic participants) from the Whitehall II study to assess whether circulating high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL6), IL1 receptor antagonist (IL1Ra) and adiponectin are associated with subsequent changes in glycaemia, insulin, insulin resistance and beta-cell function (based on oral glucose tolerance tests). We examined bidirectionality by testing if parameters of glucose metabolism at baseline are associated with changes in inflammation-related biomarkers. Results: Higher hsCRP and IL6 were associated with increases in fasting insulin, insulin resistance and, for IL6, with beta-cell function after adjustment for confounders. Higher adiponectin was associated with decreases in fasting glucose, HbA1c, fasting insulin, insulin resistance and beta-cell function. The reverse approach showed that 2-h glucose and insulin sensitivity were associated with changes in IL1Ra. Fasting insulin and insulin resistance showed inverse associations with changes in adiponectin. Conclusions: Subclinical inflammation is associated with development of increased glycaemia, insulin resistance and beta-cell function in non-diabetic individuals. These findings are consistent with the hypothesis that inflammation-related processes may increase insulin resistance and lead to a compensatory upregulation of beta-cell function

    Risk of Cardiovascular Disease and Death in Individuals With Prediabetes Defined by Different Criteria: The Whitehall II Study

    Get PDF
    OBJECTIVE: We compared the risk of cardiovascular disease (CVD) and all-cause mortality in subgroups of prediabetes defined by fasting plasma glucose (FPG), 2-h plasma glucose (2hPG), or HbA1c. RESEARCH DESIGN AND METHODS: In the Whitehall II cohort, 5,427 participants aged 50–79 years and without diabetes were followed for a median of 11.5 years. A total of 628 (11.6%) had prediabetes by the World Health Organization (WHO)/International Expert Committee (IEC) criteria (FPG 6.1–6.9 mmol/L and/or HbA1c 6.0–6.4%), and 1,996 (36.8%) by the American Diabetes Association (ADA) criteria (FPG 5.6–6.9 mmol/L and/or HbA1c 5.7–6.4%). In a subset of 4,730 individuals with additional measures of 2hPG, 663 (14.0%) had prediabetes by 2hPG. Incidence rates of a major event (nonfatal/fatal CVD or all-cause mortality) were compared for different definitions of prediabetes, with adjustment for relevant confounders. RESULTS: Compared with that for normoglycemia, incidence rate in the context of prediabetes was 54% higher with the WHO/IEC definition and 37% higher with the ADA definition (P < 0.001) but declining to 17% and 12% after confounder adjustment (P ≥ 0.111). Prediabetes by HbA1c was associated with a doubling in incidence rate for both the IEC and ADA criteria. However, upon adjustment, excess risk was reduced to 13% and 17% (P ≥ 0.055), respectively. Prediabetes by FPG or 2hPG was not associated with an excess risk in the adjusted analysis. CONCLUSIONS: Prediabetes defined by HbA1c was associated with a worse prognosis than prediabetes defined by FPG or 2hPG. However, the excess risk among individuals with prediabetes is mainly explained by the clustering of other cardiometabolic risk factors associated with hyperglycemia

    Tracking Blood Glucose and Predicting Prediabetes in Chinese Children and Adolescents: A Prospective Twin Study

    Get PDF
    We examined the tracking of blood glucose, the development of prediabetes, and estimated their genetic contributions in a prospective, healthy, rural Chinese twin cohort. This report includes 1,766 subjects (998 males, 768 females) aged 6–21 years at baseline who completed a 6-year follow-up study. Oral glucose tolerance test was performed for all subjects at both baseline and follow-up. We found that subjects with low fasting plasma glucose (FPG) or 2 h post-load glucose (PG) levels at baseline tended to remain at the low level at follow-up. Subjects in the top tertile of baseline plasma glucose tended to have a higher risk of developing prediabetes at follow-up compared to the low tertile: in males, 37.6% vs. 27.6% for FPG and 37.2% vs. 25.7% for 2hPG, respectively; in females, 31.0% vs. 15.4% for FPG and 28.9% vs. 15.1% for 2 h PG, respectively. Genetic factors explained 43% and 41% of the variance of FPG, and 72% and 47% for impaired fasting glucose for males and females, respectively; environmental factors substantially contribute to 2hPG status and impaired glucose tolerance. In conclusion, in this cohort of healthy rural Chinese children and adolescents, we demonstrated that both FPG and 2hPG tracked well and was a strong predictor of prediabetes. The high proportion of children with top tertile of blood glucose progressed to prediabetes, and the incidence of prediabetes has a male predominance. Genetic factors play more important role in fasting than postload status, most of which was explained by unique environmental factors

    Indices of insulin sensitivity and secretion from a standard liquid meal test in subjects with type 2 diabetes, impaired or normal fasting glucose

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To provide an initial evaluation of insulin sensitivity and secretion indices derived from a standard liquid meal tolerance test protocol in subjects with normal (NFG), impaired fasting glucose (IFG) or type 2 diabetes mellitus.</p> <p>Methods</p> <p>Areas under the curve (AUC) for glucose, insulin and C-peptide from pre-meal to 120 min after consumption of a liquid meal were calculated, as were homeostasis model assessments of insulin resistance (HOMA2-IR) and the Matsuda index of insulin sensitivity.</p> <p>Results</p> <p>Subjects with NFG (n = 19), IFG (n = 19), and diabetes (n = 35) had mean ± SEM HOMA2-IR values of 1.0 ± 0.1, 1.6 ± 0.2 and 2.5 ± 0.3 and Matsuda insulin sensitivity index values of 15.6 ± 2.0, 8.8 ± 1.2 and 6.0 ± 0.6, respectively. The log-transformed values for these variables were highly correlated overall and within each fasting glucose category (r = -0.91 to -0.94, all p < 0.001). Values for the product of the insulin/glucose AUC ratio and the Matsuda index, an indicator of the ability of the pancreas to match insulin secretion to the degree of insulin resistance, were 995.6 ± 80.7 (NFG), 684.0 ± 57.3 (IFG) and 188.3 ± 16.1 (diabetes) and discriminated significantly between fasting glucose categories (p < 0.001 for each comparison).</p> <p>Conclusion</p> <p>These results provide initial evidence to support the usefulness of a standard liquid meal tolerance test for evaluation of insulin secretion and sensitivity in clinical and population studies.</p

    Long-term effects of high-fat or high-carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a deficiency

    Get PDF
    Background: Abnormal fatty acid metabolism is an important feature in the mechanisms of insulin resistance and β-cell dysfunction. Carnitine palmitoyltransferase-1a (CPT-1a, liver isoform) has a pivotal role in the regulation of mitochondrial fatty acid oxidation. We investigated the role of CPT-1a in the development of impaired glucose tolerance using a mouse model for CPT-1a deficiency when challenged by either a high-carbohydrate (HCD) or a high-fat diet (HFD) for a total duration of up to 46 weeks

    Differential impact of impaired fasting glucose versus impaired glucose tolerance on cardiometabolic risk factors in multi-ethnic overweight/obese children

    Get PDF
    We aimed to investigate the prevalence of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), and their associations with cardiometabolic risk factors, according to ethnicity in a large obese paediatric cohort. A 75-g oral glucose tolerance test was performed in 1,007 overweight/obese Dutch children of multi-ethnic origin, referred to the obesity outpatient clinics of two Dutch hospitals in Amsterdam (mean age, 11.4 ± 3.2 years; 50.7% boys). Anthropometric parameters and blood samples were collected, and cardiometabolic risk factors were assessed. The cohort consisted of Dutch native (26.0%), Turkish (23.7%), Moroccan (18.8%) and children of ‘other’ (31.5%) ethnicity. The prevalence of IFG was significantly higher in Moroccan and Turkish children as compared to Dutch native children (25.4% and 19.7% vs. 11.8%, respectively, P < 0.05). IGT was most frequently present in Turkish and Dutch native children, relative to Moroccan children (6.3% and 5.3% vs. 1.6%, P < 0.05). Besides pubertal status and ethnicity, components of ‘metabolic syndrome’ (MetS) which were associated with IGT, independent of hyperinsulinaemia, were hypertension [odds ratio (OR), 2.3; 95% CI, 1.1–4.9] while a trend was seen for high triglycerides (OR, 2.0; 95% CI, 0.9–4.3). When analyzing components of MetS which were associated with IFG, only low high-density lipoprotein cholesterol was significantly associated (OR, 1.7; 95% CI, 1.2–2.5) independent of hyperinsulinaemia. In conclusion, in a Dutch multi-ethnic cohort of overweight/obese children, a high prevalence of IFG was found against a low prevalence of IGT, which differed in their associations with cardiometabolic risk factors

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    Cohort profile: the German Diabetes Study (GDS)

    Full text link
    corecore