27 research outputs found
Investigating the analgesic effects of combined diphenhydramine and dipyrone in mice
Pain relief is a crucial aspect of modern surgery. The analgesic used should possess strong analgesic properties, a rapid onset of action, and minimal side effects to effectively reduce pain during and after surgical procedures. Therefore, the aim of the present study was to evaluate the analgesic effects of diphenhydramine and dipyrone (metamizole) in mice. For this study, 30 mice were randomly divided into five groups: the control group received normal saline; the standard group received 10 mg/kg morphine; treatment group 1 received 2.5 mg/kg diphenhydramine; treatment group 2 received 2.5 mg/kg dipyrone; and treatment group 3 received 2.5 mg/kg diphenhydramine combined with 2.5 mg/kg dipyrone. After injection, pain was assessed using the hot plate test and the formalin test. The results from both tests indicated that the combined use of dipyrone and diphenhydramine produced significant analgesic effects. Additionally, neither dipyrone (metamizole) nor diphenhydramine exhibited any side effects. Therefore, the use of dipyrone (metamizole) and diphenhydramine is recommended for safer surgical procedures
Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells
Plant constituents could act as chelating/reducing or capping agents for synthesis of silver nanoparticles (AgNPs). The green synthesis of AgNPs has been considered as an environmental friendly and cost-effective alternative to other fabrication methods. The present work described the biosynthesis of AgNPs using callus extracts from Taxus yunnanensis and evaluated their antibacterial activities in vitro and potential cytotoxicity in cancer cells. Callus extracts were able to reduce silver nitrate at 1 mM in 10 min. Transmission electron microscope (TEM) indicated the synthesized AgNPs were spherical with the size range from 6.4 to 27.2 nm. X-ray diffraction (XRD) confirmed the AgNPs were in the form of nanocrystals. Fourier transform infrared spectroscopy (FTIR) suggested phytochemicals in callus extracts were possible reducing and capping agents. The AgNPs exhibited effective inhibitory activity against all tested human pathogen bacteria and the inhibition against Gram-positive bacteria was stronger than that of Gram-negative bacteria. Furthermore, they exhibited stronger cytotoxic activity against human hepatoma SMMC-7721 cells and induced noticeable apoptosis in SMMC-7721 cells, but showed lower cytotoxic against normal human liver cells (HL-7702). Our results suggested that biosynthesized AgNPs could be an alternative measure in the field of antibacterial and anticancer therapeutics
Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture
Nanotechnology is a most promising field for generating new applications in medicine, although, only few nano products are currently in use for medical purposes. A most prominent nanoproduct is nanosilver. Nano-silver has biological properties which are significant for consumer products, food technology, textiles, and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products. The use of nano-silver is becoming more and more widespread in medicine and related applications, and due to its increasing exposure, toxicological and environmental issues need to be raised. Cytotoxicity induced by silver nanoparticles (AgNPs) and the role that oxidative stress plays in this process were demonstrated in human hepatoma cells AgNPs agglomerated in the cytoplasm and nuclei of treated cells, and they induced intracellular oxidative stress. AgNP reduced ATP content of the cell and caused damage to mitochondria and increased production of reactive oxygen species (ROS) in a dose-dependent manner. Silymarin was known as a hepatoprotective agent that is used in the treatment of hepatic diseases including viral hepatitis, alcoholic liver diseases, Amanita mushroom poisoning, liver cirrhosis, toxic and drug-induced liver diseases. It promotes protein synthesis, helps in regenerating liver tissue, controls inflammation, enhances glucuronidation, and protects against glutathione depletion. Vitamin E is a well-known antioxidant and has hepatoprotective effect in liver diseases. In this study, we investigated the cytotoxic effects of Ag NPs on primary liver cells of mice. Cell viability (cytotoxicity) was examined with MTT assay after primary liver cells of mice exposure to AgNPs at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration- dependent decrease of cell viability (IC50 value = 121.7 ppm or µg/ml). Then the hepatoprotective effect of silymarin and vitamin E were experimented on silver nanoparticle toxicity on mice liver primary cell culture. The results showed that silymarin at 600µg/ml and vitamin E at 2500µmol/l have protective effects on silver nanoparticle toxicity on mice liver primary cell culture. Viability percentage of the primary liver cell of the mouse were exposed to silver nanoparticles at 121.7ppm and co-treatment of silymarin, and vitamin E is more than viability percentage of the primary liver cell of the mouse were exposed to silver nanoparticles and silymarin or silver nanoparticles and vitamin E
