16 research outputs found

    Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate

    No full text
    The “hierarchy of factors” hypothesis states that decomposition rates are controlled primarily by climatic, followed by biological and soil variables. Tropical montane forests (TMF) are globally important ecosystems, yet there have been limited efforts to provide a biome-scale characterization of litter decomposition. We designed a common litter decomposition experiment replicated in 23 tropical montane sites across the Americas, Asia, and Africa and combined these results with a previous study of 23 sites in tropical lowland forests (TLF). Specifically, we investigated (1) spatial heterogeneity in decomposition, (2) the relative importance of biological factors that affect leaf and wood decomposition in TMF, and (3) the role of climate in determining leaf litter decomposition rates within and across the TMF and TLF biomes. Litterbags of two mesh sizes containing Laurus nobilis leaves or birchwood popsicle sticks were spatially dispersed and incubated in TMF sites, for 3 and 7 months on the soil surface and at 10–15 cm depth. The within-site replication demonstrated spatial variability in mass loss. Within TMF, litter type was the predominant biological factor influencing decomposition (leaves > wood), with mesh and burial effects playing a minor role. When comparing across TMF and TLF, climate was the predominant control over decomposition, but the Yasso07 global model (based on mean annual temperature and precipitation) only modestly predicted decomposition rate. Differences in controlling factors between biomes suggest that TMF, with their high rates of carbon storage, must be explicitly considered when developing theory and models to elucidate carbon cycling rates in the tropics.Fil: Ostertag, Rebecca. University of Hawaii at Manoa; Estados UnidosFil: Restrepo, Carla. Universidad de Puerto Rico; Puerto RicoFil: Dalling, James W.. University of Illinois at Urbana; Estados UnidosFil: Martin, Patrick H.. University of Denver.; Estados UnidosFil: Abiem, Iveren. No especifíca;Fil: Aiba, Shinichiro. Hokkaido University; JapónFil: Alvarez Dávila, Esteban. No especifíca;Fil: Aragón, Myriam Roxana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Ataroff, Michelle. Universidad de los Andes; ColombiaFil: Chapman, Hazel. University of Canterbury; Nueva ZelandaFil: Cueva Agila, Augusta Y.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Fadrique, Belen. University of Leeds; Reino UnidoFil: Fernandez, Romina Daiana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: González, Grizelle. No especifíca;Fil: Gotsch, Sybil G.. No especifíca;Fil: Poma López, Laura Nohemy. Universidad Nacional de Loja; EcuadorFil: Tobón, Conrado. Universidad Nacional de Colombia; ColombiaFil: Williams, Cameron B.. No especifíca

    Open Science principles for accelerating trait-based science across the Tree of Life

    No full text
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges

    Publisher Correction: Open Science principles for accelerating trait-based science across the Tree of Life

    No full text
    In the version of this Perspective originally published, the first author of reference 39 was incorrectly listed as W. Cornwell and the publication year was incorrect. The reference should have read as follows: “Flores-Moreno, H. et al. fungaltraits aka funfun: a dynamic functional trait database for the world's fungi (GitHub, 2019); https://doi.org/10.5281/zenodo.1216257”. This has now been corrected

    Open Science principles for accelerating trait-based science across the Tree of Life

    No full text
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles—open data, open source and open methods—is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges
    corecore