655 research outputs found

    A symplectic realization of the Volterra lattice

    Full text link
    We examine the multiple Hamiltonian structure and construct a symplectic realization of the Volterra model. We rediscover the hierarchy of invariants, Poisson brackets and master symmetries via the use of a recursion operator. The rational Volterra bracket is obtained using a negative recursion operator.Comment: 8 page

    Effective-Mass Dirac Equation for Woods-Saxon Potential: Scattering, Bound States and Resonances

    Get PDF
    Approximate scattering and bound state solutions of the one-dimensional effective-mass Dirac equation with the Woods-Saxon potential are obtained in terms of the hypergeometric-type functions. Transmission and reflection coefficients are calculated by using behavior of the wave functions at infinity. The same analysis is done for the constant mass case. It is also pointed out that our results are in agreement with those obtained in literature. Meanwhile, an analytic expression is obtained for the transmission resonance and observed that the expressions for bound states and resonances are equal for the energy values E=±mE=\pm m.Comment: 20 pages, 6 figure

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Efficient numerical diagonalization of hermitian 3x3 matrices

    Full text link
    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published version, typo in Eq. (39) corrected; software library available at http://www.mpi-hd.mpg.de/~globes/3x3

    Asymptotic Infrared Fractal Structure of the Propagator for a Charged Fermion

    Full text link
    It is well known that the long-range nature of the Coulomb interaction makes the definition of asymptotic ``in'' and ``out'' states of charged particles problematic in quantum field theory. In particular, the notion of a simple particle pole in the vacuum charged particle propagator is untenable and should be replaced by a more complicated branch cut structure describing an electron interacting with a possibly infinite number of soft photons. Previous work suggests a Dirac propagator raised to a fractional power dependent upon the fine structure constant, however the exponent has not been calculated in a unique gauge invariant manner. It has even been suggested that the fractal ``anomalous dimension'' can be removed by a gauge transformation. Here, a gauge invariant non-perturbative calculation will be discussed yielding an unambiguous fractional exponent. The closely analogous case of soft graviton exponents is also briefly explored.Comment: Updated with a corrected sign error, longer discussion of fractal dimension, and more reference

    Spectral signatures of the Luttinger liquid to charge-density-wave transition

    Full text link
    Electron- and phonon spectral functions of the one-dimensional, spinless-fermion Holstein model at half filling are calculated in the four distinct regimes of the phase diagram, corresponding to an attractive or repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or polaronic insulator at strong coupling. The results obtained by means of kernel polynomial and systematic cluster approaches reveal substantially different physics in these regimes and further indicate that the size of the phonon frequency significantly affects the nature of the quantum Peierls phase transition.Comment: 5 pages, 4 figures; final version, accepted for publication in Physical Review

    Deformed dimensional regularization for odd (and even) dimensional theories

    Full text link
    I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments, IJMP
    corecore