825 research outputs found

    Scalar field in a minimally coupled brane world: no-hair and other no-go theorems

    Full text link
    In the brane-world framework, we consider static, spherically symmetric configurations of a scalar field with the Lagrangian (\d\phi)^2/2 - V(\phi), confined on the brane. We use the 4D Einstein equations on the brane obtained by Shiromizu et al., containing the usual stress tensor T\mN, the tensor \Pi\mN, quadratic in T\mN, and E\mN describing interaction with the bulk. For models under study, the tensor \Pi\mN has zero divergence, so we can consider a "minimally coupled" brane with E\mN = 0, whose 4D gravity is decoupled from the bulk geometry. Assuming E\mN =0, we try to extend to brane worlds some theorems valid for scalar fields in general relativity (GR). Thus, the list of possible global causal structures in all models under consideration is shown to be the same as is known for vacuum with a LambdaLambda term in GR: Minkowski, Schwarzschild, (A)dS and Schwarzschild-(A)dS. A no-hair theorem, saying that, given a potential V0V\geq 0, asymptotically flat black holes cannot have nontrivial external scalar fields, is proved under certain restrictions. Some objects, forbidden in GR, are allowed on the brane, e.g, traversable wormholes supported by a scalar field, but only at the expense of enormous matter densities in the strong field region.Comment: 8 pages, Latex2e. Numerical estimates and a few references adde

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Modern philosophy of education

    Get PDF
    The authors suggest the concept of philosophy of education, which implies that education is focused on building the concept of a creative professional. The paper actualizes problems of methodology of scientific knowledge, ontological and gnoseological thinking alongside with their role in education. It is claimed that understanding of gnoseological thinking that captures the cognitive process as a whole, including methods, resources, procedures, approaches and ability to apply this method within the scope of science in any educational process, is a necessary condition in developing a creatively thinking professional. Thus, in order to implement this objective the paper covers the use of interdisciplinary and abovedisciplinary approaches in education

    A symplectic realization of the Volterra lattice

    Full text link
    We examine the multiple Hamiltonian structure and construct a symplectic realization of the Volterra model. We rediscover the hierarchy of invariants, Poisson brackets and master symmetries via the use of a recursion operator. The rational Volterra bracket is obtained using a negative recursion operator.Comment: 8 page

    Basic Types of Legal Aid in Criminal Legal Proceedings

    Get PDF
    The study of the features of legal assistance in the criminal process as a comprehensive legislative and scientific category allowed the Author to determine the classification grounds and distinguish four of its main types: legal assistance provided by state criminal justice bodies and their officials; qualified legal assistance provided by lawyers and legal advisers; legal assistance provided by close relatives or other persons who are participants in the criminal process; legal assistance provided by authorized persons who are not subjects of criminal proceedings

    OPTIMIZATION OF BURNING PRODUCTION PROCESS OF CERAMSITE WITH SPECIFIED DENSITY

    Get PDF
    The paper goes into peculiarities of using developed mathematical models of ceramsite burning and computational models created on their basis. The work is done in the light of analysis and synthesis of multivariate control system of kiln angular velocity and kiln charge with volumetric thermal capacity burners. It is shown that computational models of burning as an object of control are problem-oriented on producing ceramsite with specified density. Mathematical model of ceramsite burning process as an object with distributed parameters is synthesized. The transition from model with distributed parameters to the mode with lumped parameters is performed. Then the authors used a model with three bearing cross-sections along Z-axis in Matlab software and created a computational model of multivariate object of control with inter-channel connections. The paper presents experimental computational set up methods and methods of ceramsite burning optimal curve identification on the criterion of minimizing energy consumption for burning. The developed method of staging computational experiments makes it possible to predict the strength of ceramsite if values of control actions are known. The results of modeling help create methodology of choosing optimal modes of ceramsite burning with the required mark of strength and with minimum energy consumption
    corecore