10 research outputs found

    Boosting Multi-Task Weak Learners with Applications to Textual and Social Data

    Get PDF
    International audienceLearning multiple related tasks from data simultaneously can improve predictive performance relative to learning these tasks independently. In this paper we propose a novel multi-task learning algorithm called MT-Adaboost: it extends Adaboost algorithm to the multi-task setting; it uses as multi-task weak classifier a multi-task decision stump. This allows to learn different dependencies between tasks for different regions of the learning space. Thus, we relax the conventional hypothesis that tasks behave similarly in the whole learning space. Moreover, MT-Adaboost can learn multiple tasks without imposing the constraint of sharing the same label set and/or examples between tasks. A theoretical analysis is derived from the analysis of the original Adaboost. Experiments for multiple tasks over large scale textual data sets with social context (Enron and Tobacco) give rise to very promising results

    Méthodes d’ensembles pour l’apprentissage multi-tâche avec des tâches hétérogènes et sans restrictions

    No full text
    Learning multiple related tasks jointly by exploiting their underlying shared knowledge can improve the predictive performance on every task compared to learning them individually. In this thesis, we address the problem of multi-task learning (MTL) when the tasks are heterogenous: they do not share the same labels (eventually with different number of labels), they do not require shared examples. In addition, no prior assumption about the relatedness pattern between tasks is made. Our contribution to multi-task learning lies in the framework of en- semble learning where the learned function consists normally of an ensemble of "weak " hypothesis aggregated together by an ensemble learning algorithm (Boosting, Bagging, etc.). We propose two approaches to cope with heterogenous tasks without making prior assumptions about the relatedness patterns. For each approach, we devise novel multi-task weak hypothesis along with their learning algorithms then we adapt a boosting algorithm to the multi-task setting. In the first approach, the weak classi ers we consider are 2-level decision stumps for di erent tasks. A weak classi er assigns a class to each instance on two tasks and abstain on other tasks. The weak classi ers allow to handle dependencies between tasks on the instance space. We introduce di fferent effi cient weak learners. We then consider Adaboost with weak classi ers which can abstain and adapt it to multi-task learning. In an empirical study, we compare the weak learners and we study the influence of the number of boosting rounds. In the second approach, we develop the multi-task Adaboost environment with Multi-Task Decision Trees as weak classi ers. We fi rst adapt the well known decision tree learning to the multi-task setting. We revise the information gain rule for learning decision trees in the multi-task setting. We use this feature to develop a novel criterion for learning Multi-Task Decision Trees. The criterion guides the tree construction by learning the decision rules from data of di fferent tasks, and representing diff erent degrees of task relatedness. We then modify MT-Adaboost to combine Multi-task Decision Trees as weak learners. We experimentally validate the advantage of our approaches; we report results of experiments conducted on several multi-task datasets, including the Enron email set and Spam Filtering collection.Apprendre des tâches simultanément peut améliorer la performance de prédiction par rapport à l'apprentissage de ces tâches de manière indépendante. Dans cette thèse, nous considérons l'apprentissage multi-tâche lorsque le nombre de tâches est grand. En outre, nous débattons des restrictions imposées sur les tâches. Ces restrictions peuvent être trouvées dans les méthodes de l'état de l'art. Plus précisément on trouve les restrictions suivantes : l'imposition du même espace d'étiquette sur les tâches, l'exigence des mêmes exemples d'apprentissage entre tâches et / ou supposant une hypothèse de corrélation globale entre tâches. Nous proposons des nouveaux classificateurs multi-tâches qui relaxent les restrictions précédentes. Nos classificateurs sont considérés en fonction de la théorie de l'apprentissage PAC des classifieurs faibles, donc, afin de parvenir à un faible taux d'erreur de classification, un ensemble de ces classifieurs faibles doivent être appris. Ce cadre est appelé l'apprentissage d'ensembles, dans lequel nous proposons un algorithme d'apprentissage multi-tâche inspiré de l'algorithme Adaboost pour seule tâche. Différentes variantes sont proposées également, à savoir, les forêts aléatoires pour le multi-tâche, c'est une méthode d'apprentissage d'ensemble, mais fondée sur le principe statistique d'échantillonnage Bootstrap. Enfin, nous donnons une validation expérimentale qui montre que l'approche sur-performe des méthodes existantes et permet d'apprendre des nouvelles configurations de tâches qui ne correspondent pas aux méthodes de l'état de l'art

    Ensemble Methods to Learn Multiple Heterogenous Tasks without Restrictions

    No full text
    Apprendre des tâches simultanément peut améliorer la performance de prédiction par rapport à l'apprentissage de ces tâches de manière indépendante. Dans cette thèse, nous considérons l'apprentissage multi-tâche lorsque le nombre de tâches est grand. En outre, nous débattons des restrictions imposées sur les tâches. Ces restrictions peuvent être trouvées dans les méthodes de l'état de l'art. Plus précisément on trouve les restrictions suivantes : l'imposition du même espace d'étiquette sur les tâches, l'exigence des mêmes exemples d'apprentissage entre tâches et / ou supposant une hypothèse de corrélation globale entre tâches. Nous proposons des nouveaux classificateurs multi-tâches qui relaxent les restrictions précédentes. Nos classificateurs sont considérés en fonction de la théorie de l'apprentissage PAC des classifieurs faibles, donc, afin de parvenir à un faible taux d'erreur de classification, un ensemble de ces classifieurs faibles doivent être appris. Ce cadre est appelé l'apprentissage d'ensembles, dans lequel nous proposons un algorithme d'apprentissage multi-tâche inspiré de l'algorithme Adaboost pour seule tâche. Différentes variantes sont proposées également, à savoir, les forêts aléatoires pour le multi-tâche, c'est une méthode d'apprentissage d'ensemble, mais fondée sur le principe statistique d'échantillonnage Bootstrap. Enfin, nous donnons une validation expérimentale qui montre que l'approche sur-performe des méthodes existantes et permet d'apprendre des nouvelles configurations de tâches qui ne correspondent pas aux méthodes de l'état de l'art.Learning multiple related tasks jointly by exploiting their underlying shared knowledge can improve the predictive performance on every task compared to learning them individually. In this thesis, we address the problem of multi-task learning (MTL) when the tasks are heterogenous: they do not share the same labels (eventually with different number of labels), they do not require shared examples. In addition, no prior assumption about the relatedness pattern between tasks is made. Our contribution to multi-task learning lies in the framework of en- semble learning where the learned function consists normally of an ensemble of "weak " hypothesis aggregated together by an ensemble learning algorithm (Boosting, Bagging, etc.). We propose two approaches to cope with heterogenous tasks without making prior assumptions about the relatedness patterns. For each approach, we devise novel multi-task weak hypothesis along with their learning algorithms then we adapt a boosting algorithm to the multi-task setting. In the first approach, the weak classi ers we consider are 2-level decision stumps for di erent tasks. A weak classi er assigns a class to each instance on two tasks and abstain on other tasks. The weak classi ers allow to handle dependencies between tasks on the instance space. We introduce di fferent effi cient weak learners. We then consider Adaboost with weak classi ers which can abstain and adapt it to multi-task learning. In an empirical study, we compare the weak learners and we study the influence of the number of boosting rounds. In the second approach, we develop the multi-task Adaboost environment with Multi-Task Decision Trees as weak classi ers. We fi rst adapt the well known decision tree learning to the multi-task setting. We revise the information gain rule for learning decision trees in the multi-task setting. We use this feature to develop a novel criterion for learning Multi-Task Decision Trees. The criterion guides the tree construction by learning the decision rules from data of di fferent tasks, and representing diff erent degrees of task relatedness. We then modify MT-Adaboost to combine Multi-task Decision Trees as weak learners. We experimentally validate the advantage of our approaches; we report results of experiments conducted on several multi-task datasets, including the Enron email set and Spam Filtering collection

    Learning Multiple Tasks with Boosted Decision Trees

    No full text
    International audienceWe address the problem of multi-task learning with no label correspondence among tasks. Learning multiple related tasks simultane- ously, by exploiting their shared knowledge can improve the predictive performance on every task. We develop the multi-task Adaboost en- vironment with Multi-Task Decision Trees as weak classifiers. We first adapt the well known decision tree learning to the multi-task setting. We revise the information gain rule for learning decision trees in the multi- task setting. We use this feature to develop a novel criterion for learning Multi-Task Decision Trees. The criterion guides the tree construction by learning the decision rules from data of different tasks, and representing different degrees of task relatedness. We then modify MT-Adaboost to combine Multi-task Decision Trees as weak learners. We experimentally validate the advantage of the new technique; we report results of ex- periments conducted on several multi-task datasets, including the Enron email set and Spam Filtering collection

    Learning Multiple Tasks with Boosted Decision Trees

    No full text
    International audienceWe address the problem of multi-task learning with no label correspondence among tasks. Learning multiple related tasks simultane- ously, by exploiting their shared knowledge can improve the predictive performance on every task. We develop the multi-task Adaboost en- vironment with Multi-Task Decision Trees as weak classifiers. We first adapt the well known decision tree learning to the multi-task setting. We revise the information gain rule for learning decision trees in the multi- task setting. We use this feature to develop a novel criterion for learning Multi-Task Decision Trees. The criterion guides the tree construction by learning the decision rules from data of different tasks, and representing different degrees of task relatedness. We then modify MT-Adaboost to combine Multi-task Decision Trees as weak learners. We experimentally validate the advantage of the new technique; we report results of ex- periments conducted on several multi-task datasets, including the Enron email set and Spam Filtering collection

    Automatic Termination for Hyperparameter Optimization

    Full text link
    Bayesian optimization (BO) is a widely popular approach for the hyperparameter optimization (HPO) of machine learning algorithms. At its core, BO iteratively evaluates promising configurations until a user-defined budget, such as wall-clock time or number of iterations, is exhausted. While the final performance after tuning heavily depends on the provided budget, it is hard to pre-specify an optimal value in advance. In this work, we propose an effective and intuitive termination criterion for BO that automatically stops the procedure if it is sufficiently close to the global optima. Across an extensive range of real-world HPO problems, we show that our termination criterion achieves better test performance compared to existing baselines from the literature, such as stopping when the probability of improvement drops below a fixed threshold. We also provide evidence that these baselines are, compared to our method, highly sensitive to the choices of their own hyperparameters. Additionally, we find that overfitting might occur in the context of HPO, which is arguably an overlooked problem in the literature, and show that our termination criterion mitigates this phenomenon on both small and large datasets.Comment: Submitted to ICLR 202
    corecore