206 research outputs found

    Ten year environmental test of glass fiber/epoxy pressure vessels

    Get PDF
    By the beginning of the 1970's composite pressure vessels had received a significant amount of development effort, and applications were beginning to be investigated. One of the first applications grew out of NASA Johnson Space Center efforts to develop a superior emergency breathing system for firemen. While the new breathing system provided improved wearer comfort and an improved mask and regulator, the primary feature was low weight which was achieved by using a glass fiber reinforced aluminum pressure vessel. Part of the development effort was to evaluate the long term performance of the pressure vessel and as a consequence, some 30 bottles for a test program were procured. These bottles were then provided to NASA Lewis Research Center where they were maintained in an outdoor environment in a pressurized condition for a period of up to 10 yr. During this period, bottles were periodically subjected to cyclic and burst testing. There was no protective coating applied to the fiberglass/epoxy composite, and significant loss in strength did occur as a result of the environment. Similar bottles stored indoors showed little, if any, degradation. This report contains a description of the pressure vessels, a discussion of the test program, data for each bottle, and appropriate plots, comparisons, and conclusions

    Structural considerations in design of lightweight glass-fiber composite pressure vessels

    Get PDF
    The development of structurally efficient, metal-lined, glass-fiber composite pressure vessels. Both the current state-of-the-art and current problems are discussed along with fracture mechanics considerations for the metal liner. The design concepts used for metal-lined, glass-fiber, composite pressure vessels are described and the structural characteristics of the composite designs are compared with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. Results of a current program to evaluate flaw growth and fracture characteristics of the metal liners are reviewed and the impact of these results on composite pressure vessel designs is discussed

    The NASA cryogenic fluid management technology program plan

    Get PDF
    During the past three decades, NASA has been designing and using large quantities of cryogenic fluids for propulsion system propellants, coolants for experiments, and for environmental control systems. As a consequence, an erroneous conclusion has been drawn that the technology exists for using large quantities of cryogens in space for long periods of time. The attempt here is to dispel that myth and to present the technology needs that require development in order to support the NASA programs of the future. A NASA program, developed through the impetus of the Marshall Space Flight Center and the Lewis Research Center and supported by all NASA centers is outlined. The current state of the art is discussed along with specific needs for near future missions. Then, using the Space Exploration Initiative mission set, cost/benefit projections are made for the development of advanced cryogenic fluid management techniques. Earth based and space based test programs are discussed relative to the technology requirements for liquid storage, supply, and transfer for fluid transfer and advanced instrumentation

    Cost/benefit assessment of the application of composite materials to subsonic commercial transport engines

    Get PDF
    Results from a number of studies concerned with the cost and benefits of applying advanced composite materials to commercial turbofan engines are summarized. For each application area the optimistic and pessimistic benefit projections were averaged to arrive at a projected yearly percentage fuel savings for a commercial fleet of advanced technology transport aircraft. Engine components included in the summary are the fan section which includes fan blades, fan frame/case, and the blade containment ring; the nacelle; and the high pressure turbine blades and vanes. The projected fuel savings resulting from the application of composites are 1.85 percent for the fan section, 1.75 percent for the nacelle, and 2.35 percent for the high pressure turbine

    The kinetics of the hemolysin of Newcastle disease virus

    Get PDF

    Examination, evaluation and repair of laminated wood blades after service on the Mod-OA wind turbine

    Get PDF
    Laminated wood blades were designed, fabricated, and installed on a 200-KW wind turbine (Mod-OA). The machine uses a two-blade rotor with a diameter of 38.1 m (125 ft). Each blade weights less than 1361 kg (3000 lb). After operating in the field, two blade sets were returned for inspection. One set had been in Hawaii for 17 months (7844 hr of operation) and the other had been at Block Island, Rhode Island, for 26 months (22 months operating - 7564 hr). The Hawaii set was returned because of one of the studs that holds the blade to the hub had failed. This was found to be caused by a combination of improper installation and inadequate corrosion protection. No other problems were found. The broken stud (along with four others that were badly corroded) was replaced and the blades are now in storage. The Block Island set of blades was returned at the completion of the test program, but one blade was found to have developed a crack in the leading edge along the entire span. This crack was found to be the result of a manufacturing process problem but was not structurally critical. When a load-deflection test was conducted on the cracked blade, the response was identical to that measured before installation. In general, the laminate quality of both blade sets was excellent. No significant internal delamination or structural defects were found in any blade. The stud bonding process requires close tolerance control and adequate corrosion protection, but studs can be removed and replaced without major problems. Moisture content stabilization does not appear to be a problem, and laminated wood blades are satisfactory for long-term operation on Mod-OA wind turbines

    Test evaluation of a laminated wood wind turbine blade concept

    Get PDF
    A series of tests conducted on a root end section of a laminated wood wind turbine blade are reported. The blade to hub transition of the wood blade uses steel studs cast into the wood D spar with a filled epoxy. Both individual studs and a full scale, short length, root section were tested. Results indicate that the bonded stud concept is more than adequate for both the 30 year life fatigue loads and for the high wind or hurricane gust loads

    Preliminary evaluation of fiber composite reinforcement of truck frame rails

    Get PDF
    The use of graphite fiber/resin matrix composite to effectively reinforce a standard steel truck frame rail is studied. A preliminary design was made and it was determined that the reinforcement weight could be reduced by a factor of 10 when compared to a steel reinforcement. A section of a 1/3 scale reinforced rail was fabricated to demonstrate low cost manufacturing techniques. The scale rail section was then tested and increased stiffness was confirmed. No evidence of composite fatigue was found after 500,000 cycles to a fiber stress of 34,000 psi. The test specimen failed in bending in a static test at a load 50 percent greater than that predicted for a non-reinforced rail
    corecore