27 research outputs found

    Effects of genome-wide copy number variation on expression in mammalian cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is only a limited understanding of the relation between copy number and expression for mammalian genes. We fine mapped <it>cis </it>and <it>trans </it>regulatory loci due to copy number change for essentially all genes using a human-hamster radiation hybrid (RH) panel. These loci are called copy number expression quantitative trait loci (ceQTLs).</p> <p>Results</p> <p>Unexpected findings from a previous study of a mouse-hamster RH panel were replicated. These findings included decreased expression as a result of increased copy number for 30% of genes and an attenuated relationship between expression and copy number on the X chromosome suggesting an <it>Xist </it>independent form of dosage compensation. In a separate glioblastoma dataset, we found conservation of genes in which dosage was negatively correlated with gene expression. These genes were enriched in signaling and receptor activities. The observation of attenuated X-linked gene expression in response to increased gene number was also replicated in the glioblastoma dataset. Of 523 gene deserts of size > 600 kb in the human RH panel, 325 contained <it>trans </it>ceQTLs with -log<sub>10 </sub><it>P </it>> 4.1. Recently discovered genes, ultra conserved regions, noncoding RNAs and microRNAs explained only a small fraction of the results, suggesting a substantial portion of gene deserts harbor as yet unidentified functional elements.</p> <p>Conclusion</p> <p>Radiation hybrids are a useful tool for high resolution mapping of <it>cis </it>and <it>trans </it>loci capable of affecting gene expression due to copy number change. Analysis of two independent radiation hybrid panels show agreement in their findings and may serve as a discovery source for novel regulatory loci in noncoding regions of the genome.</p

    Xist regulation and function eXplored

    Get PDF
    X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Get PDF
    Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Full text link
    corecore