24 research outputs found

    Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine

    Get PDF
    Orally administered phages to control zoonotic pathogens face important challenges, mainly related to the hostile conditions found in the gastrointestinal tract (GIT). These include temperature, salinity and primarily pH, which is exceptionally low in certain compartments. Phage survival under these conditions can be jeopardized and undermine treatment. Strategies like encapsulation have been attempted with relative success, but are typically complex and require several optimization steps. Here we report a simple and efficient alternative, consisting in the genetic engineering of phages to display lipids on their surfaces. Escherichia coli phage T7 was used as a model and the E. coli PhoE signal peptide was genetically fused to its major capsid protein (10A), enabling phospholipid attachment to the phage capsid. The presence of phospholipids on the mutant phages was confirmed by High Performance Thin Layer Chromatography, Dynamic Light Scattering and phospholipase assays. The stability of phages was analysed in simulated GIT conditions, demonstrating improved stability of the mutant phages with survival rates 102107 pfu.mL1 higher than wild-type phages. Our work demonstrates that phage engineering can be a good strategy to improve phage tolerance to GIT conditions, having promising application for oral administration in veterinary medicine.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and under the scope of the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). Franklin L. Nobrega and Ana Rita Costa acknowledge FCT for grants SFRH/BD/86462/2012 and SFRH/BPD/94648/2013, respectively. Melvin F. Siliakus acknowledges funding from the Biobased Ecologically Balanced Sustainable Industrial Chemistry (BE-BASIC) foundation. Electron microscopy work was performed at the Wageningen Electron Microscopy Centre (WEMC) of Wageningen University

    Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study

    Get PDF
    Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an increase in the frequency of transcriptional bursts

    The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders

    No full text
    Pain, as a sensible alarm signal of living organisms to avoid tissue damage, is a common and debilitating consequence of a lot of disorders and diseases. The management of chronic pain is particularly challenging. For pain treatment, many analgesic drugs are used for their therapeutic effects. In this study, some nonsteroidal anti-inflammatory drugs including etofenamate, meloxicam, diclofenac, and tenoxicam were tested against α-glycosidase from Saccharomyces cerevisiae, sorbitol dehydrogenase (SDH), and aldose reductase (AR) enzymes from sheep liver. Nonsteroidal anti-inflammatory drugs demonstrated useful inhibition properties against α-glycosidase, AR, and SDH enzymes. Ki values were found in the range of 11.93 ± 3.77–364.88 ± 40.01 μM for α-glycosidase, 3.36 ± 1.08μM–17.68 ± 3.39 mM for AR, and 1.68 ± 0.02 μM–30.98 ± 14.31 mM for SDH. They can be selective drugs as antidiabetic agents, because of their inhibitory properties against SDH, α-glycosidase, and AR enzymes. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
    corecore