58 research outputs found

    Influence of pregnancy and labor on the occurrence of nerve fibers expressing the capsaicin receptor TRPV1 in human corpus and cervix uteri

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical ripening is a prerequisite for a normal obstetrical outcome. This process, including labor, is a painful event that shares features with inflammatory reactions where peripheral nociceptive pathways are involved. The capsaicin and heat receptor TRPV1 is a key molecule in sensory nerves involved in peripheral nociception, but little is known regarding its role in the pregnant uterus. Therefore, the aim of this study was to investigate human corpus and cervix uteri during pregnancy and labor and non-pregnant controls for the presence of TRPV1.</p> <p>Methods</p> <p>We have investigated human uterine corpus and cervix biopsies at term pregnancy and parturition. Biopsies were taken from the upper edge of the hysterotomy during caesarean section at term (n = 8), in labor (n = 8) and from the corresponding area in the non-pregnant uterus after hysterectomy (n = 8). Cervical biopsies were obtained transvaginally from the anterior cervical lip. Serial frozen sections were examined immunohistochemically using specific antibodies to TRPV1 and nerve markers (neurofilaments/peripherin).</p> <p>Results</p> <p>In cervix uteri, TRPV1-immunoreactive fibers were scattered throughout the stroma and around blood vessels, and appeared more frequent in the sub-epithelium. Counts of TRPV1-immunoreactive nerve fibers were not significantly different between the three groups. In contrast, few TRPV1-immunoreactive fibers were found in nerve fascicles in the non-pregnant corpus, and none in the pregnant corpus.</p> <p>Conclusion</p> <p>In this study, TRPV1 innervation in human uterus during pregnancy and labor is shown for the first time. During pregnancy and labor there was an almost complete disappearance of TRPV1 positive nerve fibers in the corpus. However, cervical innervation remained throughout pregnancy and labor. The difference in TRPV1 innervation between the corpus and the cervix is thus very marked. Our data suggest that TRPV1 may be involved in pain mechanisms associated with cervical ripening and labor. Furthermore, these data support the concept that cervix uteri may be the major site from which labor pain emanates. Our findings also support the possibility of developing alternative approaches to treat labor pain.</p

    Ethyl glucuronide as a long-term alcohol biomarker in fingernail and hair

    Get PDF
    Aims: This work aimed to assess the performance of hair and fingernail ethyl glucuronide (EtG) measurement for use as a biomarker of alcohol consumption in persons with known drinking history across a range of drinking behaviours. Methods: EtG concentrations were assessed from the hair and fingernails of 50 study participants. Alcohol consumption of the previous 90 days was assessed by participant interview using the alcohol time-line follow-back (TLFB) method. EtG concentration was determined using LC/MS-MS using a method which was validated and accredited to ISO/IEC 17025 standards. Results: There was significant correlation between alcohol consumption and EtG concentrations found in hair and fingernail samples across the study group (n=50). From participants testing positive for EtG (male n=14, female n=13) no significant difference was found between male and female EtG levels in either hair or fingernails. Across all participants there was no significant difference in hair or fingernail EtG concentration between male (n=23) and females (n=27). Conclusions: Our results support the use of EtG to indicate alcohol consumption over the previous 90 days, or approximately 3 months as is the normal practice in hair analysis. The results confirm that fingernails can be a useful alternative matrix where hair samples are not available

    Towards a knowledge base for university-public engagement: Sharing knowledge, building insight, taking action

    Get PDF
    This is a final report of the AHRC/NCCPE Researching the Engaged University Project by Professor Keri Facer (University of Bristol), Paul Manners (NCCPE) and Dr Emma Agusita (ProjectResearcher, NCCPE).The project asked: what is the state of research into the Engaged University? How might this ‘field’ develop in future? It draws on a literature review and on workshops and interviews with over 70 leading researchers working in this area

    Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain

    Get PDF
    BACKGROUND: Breast pain and tenderness affects 70% of women at some time. These symptoms have been attributed to stretching of the nerves with increase in breast size, but tissue mechanisms are poorly understood. METHODS: Eighteen patients (n = 12 breast reduction and n = 6 breast reconstruction) were recruited and assessed for breast pain by clinical questionnaire. Breast skin biopsies from each patient were examined using immunohistological methods with specific antibodies to the capsaicin receptor TRPV1, related vanilloid thermoreceptors TRPV3 and TRPV4, and nerve growth factor (NGF). RESULTS: TRPV1-positive intra-epidermal nerve fibres were significantly increased in patients with breast pain and tenderness (TRPV1 fibres / mm epidermis, median [range] – no pain group, n = 8, 0.69 [0–1.27]; pain group, n = 10, 2.15 [0.77–4.38]; p = 0.0009). Nerve Growth Factor, which up-regulates TRPV1 and induces nerve sprouting, was present basal keratinocytes: some breast pain specimens also showed NGF staining in supra-basal keratinocytes. TRPV4-immunoreactive fibres were present in sub-epidermis but not significantly changed in painful breast tissue. Both TRPV3 and TRPV4 were significantly increased in keratinocytes in breast pain tissues; TRPV3, median [range] – no pain group, n = 6, 0.75 [0–2]; pain group, n = 11, 2 [1-3], p = 0.008; TRPV4, median [range] – no pain group, n = 6, [0–1]; pain group, n = 11, 1 [0.5–2], p = 0.014). CONCLUSION: Increased TRPV1 intra-epidermal nerve fibres could represent collateral sprouts, or re-innervation following nerve stretch and damage by polymodal nociceptors. Selective TRPV1-blockers may provide new therapy in breast pain. The role of TRPV3 and TRPV4 changes in keratinocytes deserve further study

    COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord

    Get PDF
    BACKGROUND: While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. METHODS: Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. RESULTS: In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions. CONCLUSION: It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS

    Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study

    Get PDF
    BACKGROUND: Recent studies show that inflammatory processes may contribute to neuropathic pain. Cyclooxygenase-2 (Cox-2) is an inducible enzyme responsible for production of prostanoids, which may sensitise sensory neurones via the EP1 receptor. We have recently reported that while macrophages infiltrate injured nerves within days of injury, they express increased Cox-2-immunoreactivity (Cox-2-IR) from 2 to 3 weeks after injury. We have now investigated the time course of EP1 and Cox-2 changes in injured human nerves and dorsal root ganglia (DRG), and the chronic constriction nerve injury (CCI) model in the rat. METHODS: Tissue sections were immunostained with specific antibodies to EP1, Cox-2, CD68 (human macrophage marker) or OX42 (rat microglial marker), and neurofilaments (NF), prior to image analysis, from the following: human brachial plexus nerves (21 to 196 days post-injury), painful neuromas (9 days to 12 years post-injury), avulsion injured DRG, control nerves and DRG, and rat CCI model tissues. EP1 and NF-immunoreactive nerve fibres were quantified by image analysis. RESULTS: EP1:NF ratio was significantly increased in human brachial plexus nerve fibres, both proximal and distal to injury, in comparison with uninjured nerves. Sensory neurones in injured human DRG showed a significant acute increase of EP1-IR intensity. While there was a rapid increase in EP1-fibres and CD-68 positive macrophages, Cox-2 increase was apparent later, but was persistent in human painful neuromas for years. A similar time-course of changes was found in the rat CCI model with the above markers, both in the injured nerves and ipsilateral dorsal spinal cord. CONCLUSION: Different stages of infiltration and activation of macrophages may be observed in the peripheral and central nervous system following peripheral nerve injury. EP1 receptor level increase in sensory neurones, and macrophage infiltration, appears to precede increased Cox-2 expression by macrophages. However, other methods for detecting Cox-2 levels and activity are required. EP1 antagonists may show therapeutic effects in acute and chronic neuropathic pain, in addition to inflammatory pain

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
    • …
    corecore