339 research outputs found

    Changes in seed dispersal processes and the potential for between-patch connectivity for an arid land daisy

    Get PDF
    Dispersal is a major and critical process in population biology that has been particularly challenging to study. Animals can have major roles in seed dispersal even in species that do not appear specifically adapted to animal-aided dispersal. This can occur by two processes: direct movement of diaspores by animals and modification of landscape characteristics by animals in ways that greatly influence dispersal. We exploited the production of large, persistent dispersal structures (seed heads, henceforth) by Erodiophyllum elderi (Asteraceae), a daisy from arid Australia, to further understand secondary dispersal. Seed head dispersal on and off animal tracks in eight E. elderi patches was monitored for 9.5 months by periodically recording the location of marked seed heads. Sites were located inside a reserve that excludes sheep but not kangaroos, and in a nearby area with both kangaroos and sheep. The distance moved and likelihood of seed head movement was higher in areas with sheep, and especially along animal tracks. There was clear evidence that seed heads were channeled down animal tracks during large rainfall events. Seed head dispersal away from patches occurred to a limited extent via their physical contact with sheep and potentially via wind dispersal. Thus, the advantages of this study system allowed us to demonstrate the two postulated effects of herbivores on dispersal via direct movement of seed heads, and two distinct indirect effects through landscape modification by herbivores from the creation of animal tracks and the denudation of vegetation.Louise M. Emmerson, José M. Facelli, Peter Chesson, Hugh Possingham, and Jemery R. Da

    Effects of Land Crabs on Leaf Litter Distributions and Accumulations in a Mainland Tropical Rain Forest 1

    Full text link
    The effect of the fossorial land crab Gecarcinus quadratus (Gecarcinidae) on patterns of accumulation and distribution of leaf litter was studied for two years in the coastal primary forests of Costa Rica's Corcovado National Park. Within this mainland forest, G, quadratus achieve densities up to 6 crabs/m 2 in populations extending along the Park's Pacific coastline and inland for ca 600 m. Crabs selectively forage for fallen leaf litter and relocate what they collect to burrow chambers that extend from 15 to 150 cm deep ( N = 44), averaging (±SE) 48.9 ± 3.0 cm. Preference trials suggested that leaf choice by crabs may be species-specific. Excavated crab burrows revealed maximum leaf collections of 11.75 g dry mass– 2.5 times more leaf litter than collected by square-meter leaf fall traps over several seven-day sampling periods. Additionally, experimental crab exclosures (25 m 2 ) were established using a repeated measures randomized block design to test for changes in leaf litter as a function of reduced crab density. Exclosures accumulated significantly more (5.6 ± 3.9 times) leaf litter than did control treatments during the wet, but not the dry, seasons over this two-year study. Such extensive litter relocation by land crabs may affect profiles of soil organic carbon, rooting, and seedling distributions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73250/1/j.1744-7429.2003.tb00590.x.pd

    The IHI Rochester Report 2022 on Healthcare Informatics Research: Resuming After the CoViD-19

    Get PDF
    In 2020, the CoViD-19 pandemic spread worldwide in an unexpected way and suddenly modified many life issues, including social habits, social relationships, teaching modalities, and more. Such changes were also observable in many different healthcare and medical contexts. Moreover, the CoViD-19 pandemic acted as a stress test for many research endeavors, and revealed some limitations, especially in contexts where research results had an immediate impact on the social and healthcare habits of millions of people. As a result, the research community is called to perform a deep analysis of the steps already taken, and to re-think steps for the near and far future to capitalize on the lessons learned due to the pandemic. In this direction, on June 09th-11th, 2022, a group of twelve healthcare informatics researchers met in Rochester, MN, USA. This meeting was initiated by the Institute for Healthcare Informatics-IHI, and hosted by the Mayo Clinic. The goal of the meeting was to discuss and propose a research agenda for biomedical and health informatics for the next decade, in light of the changes and the lessons learned from the CoViD-19 pandemic. This article reports the main topics discussed and the conclusions reached. The intended readers of this paper, besides the biomedical and health informatics research community, are all those stakeholders in academia, industry, and government, who could benefit from the new research findings in biomedical and health informatics research. Indeed, research directions and social and policy implications are the main focus of the research agenda we propose, according to three levels: the care of individuals, the healthcare system view, and the population view

    DFT investigation of 3d transition metal NMR shielding tensors in diamagnetic systems using the gauge-including projector augmented-wave method

    Get PDF
    We present a density functional theory based method for calculating NMR shielding tensors for 3d transition metal nuclei using periodic boundary conditions. Calculations employ the gauge-including projector augmented-wave pseudopotentials method. The effects of ultrasoft pseudopotential and induced approximations on the second-order magnetic response are intensively examined. The reliability and the strength of the approach for 49Ti and 51V nuclei is shown by comparison with traditional quantum chemical methods, using benchmarks of finite organometallic systems. Application to infinite systems is validated through comparison to experimental data for the 51V nucleus in various vanadium oxide based compounds. The successful agreement obtained for isotropic chemical shifts contrasts with full estimation of the shielding tensor eigenvalues, revealing the limitation of pure exchange-correlation functionals compared to their exact-exchange corrected analogues.Comment: 56 page

    Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses

    Full text link
    1 Plant species diversity drops when fertilizer is added or productivity increases. To explain this, the total competition hypothesis predicts that competition above ground and below ground both become more important, leading to more competitive exclusion, whereas the light competition hypothesis predicts that a shift from below-ground to above-ground competition has a similar effect. The density hypothesis predicts that more above-ground competition leads to mortality of small individuals of all species, and thus a random loss of species from plots. 2 Fertilizer was added to old field plots to manipulate both below-ground and above-ground resources, while shadecloth was used to manipulate above-ground resources alone in tests of these hypotheses. 3 Fertilizer decreased both ramet density and species diversity, and the effect remained significant when density was added as a covariate. Density effects explained only a small part of the drop in diversity with fertilizer. 4 Shadecloth and fertilizer reduced light by the same amount, but only fertilizer reduced diversity. Light alone did not control diversity, as the light competition hypothesis would have predicted, but the combination of above-ground and below-ground competition caused competitive exclusion, consistent with the total competition hypothesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75695/1/j.1365-2745.2001.00662.x.pd

    Diversity Effects on Productivity Are Stronger within than between Trophic Groups in the Arbuscular Mycorrhizal Symbiosis

    Get PDF
    The diversity of plants and arbuscular mycorrhizal fungi (AMF) has been experimentally shown to alter plant and AMF productivity. However, little is known about how plant and AMF diversity interact to shape their respective productivity.We co-manipulated the diversity of both AMF and plant communities in two greenhouse studies to determine whether the productivity of each trophic group is mainly influenced by plant or AMF diversity, respectively, and whether there is any interaction between plant and fungal diversity. In both experiments we compared the productivity of three different plant species monocultures, or their respective 3-species mixtures. Similarly, in both studies these plant treatments were crossed with an AMF diversity gradient that ranged from zero (non-mycorrhizal controls) to a maximum of three and five taxonomically distinct AMF taxa, respectively. We found that within both trophic groups productivity was significantly influenced by taxon identity, and increased with taxon richness. These main effects of AMF and plant diversity on their respective productivities did not depend on each other, even though we detected significant individual taxon effects across trophic groups.Our results indicate that similar ecological processes regulate diversity-productivity relationships within trophic groups. However, productivity-diversity relationships are not necessarily correlated across interacting trophic levels, leading to asymmetries and possible biotic feedbacks. Thus, biotic interactions within and across trophic groups should be considered in predictive models of community assembly
    corecore