127 research outputs found

    Thrombin in peripheral nerves: friend or foe?

    Get PDF
    Differently from the central nervous system (CNS), the peripheral nervous system (PNS) exhibits a high regenerative capacity. This ability is related to the remarkable plasticity of Schwann cells (SCs) which after nerve injury convert to a repair-promoting phenotype to a large extent. Nerve injury is accompanied by a rapid rise of thrombin levels (Bushi et al., 2016; Gera et al., 2016). Thrombin is the key effector protease of the coagulation cascade which elicits hormonelike actions by the activation of G-protein coupled receptors known as proteaseactivated receptors (PARs). Inflammation and coagulation are two complex and interconnected pathways whose mutual interactions have been only partially elucidated

    Disability and work intensity in Italian households

    Get PDF
    The 2030 Agenda of the United Nations clearly sets the inclusion of persons with disabilities in the labour market as a main goal. However, especially in care welfare systems characterized by a low level of social services, disability not only impacts the labour market participation of disabled people themselves but may also affect the labour opportunities of other members of their household. Using EU-SILC data to compute individual work intensity-as a better measure of the actual level of labour attainment-this paper aims to disentangle direct and indirect correlations between disability and labour market participation in Italian households. In confirming the negative direct correlation between disability and labour market participation, the results also show a negative indirect correlation that depends on the family relationship between the disabled person and household members

    Membrane protein remodeling in microglia exposed to amyloid peptides

    Get PDF
    Infection, neurodegeneration, and other conditions associated with loss of brain homeostasis, induce changes in microglial morphology, gene expression and function, generally referred to as “activation”. Alzheimer’s disease (AD) is the most common dementia and is characterized by neuroinfammatory changes, including alterations in the morphology and distribution of microglia and astrocytes, and deposition of complement and other infammatory mediators. Our previous observations show that microglial cells challenged in vitro with amyloid peptides clustered and rounded up, dramatically changing their morphology. Besides, in these cells we observed the early acetylation and then the phosphorylation of STAT3 which is required for the expression of the epsilon isoform of 14-3-3, a marker of Abeta-activated microglia (1, 2). We applied afnity partitioning approach combined with high throughput mass spectrometric analysis in order to identify variation of proteins on plasma membrane of BV2 immortalized microglia upon treatment with amyloid peptides. By this method several proteins up- or down-regulated by amyloid treatment were identifed in microglial plasma membrane. Among them annexins (5 and 7), IFITM3 and MARK3. These data have been confrmed in primary microglial cultures. In microglia, plasma membrane plays a relevant role in the cross-talking with the external neuronal environment and in the resulting trophic or infammatory response of these sentinel cells. As such, knowledge of the microglia responsiveness to beta amyloids in term of changes in its plasma membrane proteome is imperative for unveiling the molecular landscape in which AD occurs

    Impairment of the autophagic flux in astrocytes intoxicated by trimethyltin

    Get PDF
    Autophagy is a lysosomal catabolic route for protein aggregates and damaged organelles which in different stress conditions, such as starvation, generally improves cell survival. An impairment of this degradation pathway has been reported to occur in many neurodegenerative processes. Trimethyltin (TMT) is a potent neurotoxin present as an environmental contaminant causing tremors, seizures and learning impairment in intoxicated subjects. The present data show that in rat primary astrocytes autophagic vesicles (AVs) appeared after few hours of TMT treatment. The analysis of the autophagic flux in TMT-treated astrocytes was consistent with a block of the late stages of autophagy and was accompanied by a progressive accumulation of the microtubule associated protein light chain 3 (LC3) and of p62/SQSTM1. Interestingly, an increased immunoreactivity for p62/SQSTM1 was also observed in hippocampal astrocytes detected in brain slices of TMT-intoxicated rats. The time-lapse recordings of AVs in EGFP-mCherry-LC3B transfected astrocytes demonstrated a reduced mobility of autophagosomes after TMT exposure respect to control cells. The observed block of the autophagic flux cannot be overcome by known autophagy inducers such as rapamycin or 0.5mM lithium. Although ineffective when used at 0.5mM, lithium at higher concentrations (2mM) was able to protect astrocyte cultures from TMT toxicity. This effect correlated well with its ability to determine the phosphorylation/inactivation of glycogen kinase synthase-3β (GSK-3β)

    Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment

    Get PDF
    Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy bloc

    The thrombin/PAR1 axis as regulator of Schwann cell functions in health and disease

    Get PDF
    Thrombin, the key eff ector protease of the coagulation cascade, mediates hemostasis, throm bosis, and infl ammatory responses to vascular injury predominantly acting through its main receptor, protease-activated receptor 1 (PAR1). PAR1 is a member of a family of four G-protein coupled receptors which are activated by proteolytic cleavage of their N-terminal extracellular domains. The expression and role of PAR1 in peripheral nervous system is still poorly inves tigated, although high PAR1 expression was found in the dorsal root ganglia and in the non compacted Schwann cell myelin microvilli at the nodes of Ranvier. Our previous results indicate that rat Schwann cell plasticity can be widely modulated by thrombin acting through PAR1 (Pompili et al., Mol and Cell Neurosci 2017; Pompili et al., Eur J Histochem 2020). Here we extend those previous data showing that thrombin regulates prolifer ation and survival of human Schwann cells increasing the expression of factors, such as matrix metalloprotease 2 (MMP2) and macrophage migration inhibitory factor (MIF), which are key in modulating nerve regeneratio

    Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier

    Get PDF
    Schwann cells (SC) are characterized by a remarkable plasticity that enables them to promptly respond to nerve injury promoting axonal regeneration. In peripheral nerves after damage SC convert to a repair-promoting phenotype activating a sequence of supportive functions that drive myelin clearance, prevent neuronal death, and help axon growth and guidance. Regeneration of peripheral nerves after damage correlates inversely with thrombin levels. Thrombin is not only the key regulator of the coagulation cascade but also a protease with hormone-like activities that affects various cells of the central and peripheral nervous system mainly through the protease-activated receptor 1 (PAR1). Aim of the present study was to investigate if and how thrombin could affect the axon supportive functions of SC. In particular, our results show that the activation of PAR1 in rat SC cultures with low levels of thrombin or PAR1 agonist peptides induces the release of molecules, which favor neuronal survival and neurite elongation. Conversely, the stimulation of SC with high levels of thrombin or PAR1 agonist peptides drives an opposite effect inducing SC to release factors that inhibit the extension of neurites. Moreover, high levels of thrombin administered to sciatic nerve ex vivo explants induce a dramatic change in SC morphology causing disappearance of the Cajal bands, enlargement of the Schmidt-Lanterman incisures and calcium-mediated demyelination of the paranodes. Our results indicate thrombin as a novel modulator of SC plasticity potentially able to favor or inhibit SC pro-regenerative properties according to its level at the site of lesion

    Autophagy is differently regulated in astrocytes and microglia exposed to environmental toxic molecules

    Get PDF
    Autophagy is generally considered a degradation pathway involved in many neurodegenerative processes. It can be observed in different stress conditions such as starvation generally improving cell survival. Our previous results described the occurrence of autophagy in neuronal cultures exposed to the toxic compound trimethyltin (TMT) (1). TMT belongs to a family of organotin compounds with wide industrial and agricultural applications, especially as heat stabilizers in PVC production and as biocides. In the nervous system TMT determines the selective destruction of neurons in specific brain regions such as the olfactory bulb and the hippocampus. When this toxic molecule was administered to glial cells we observed in astrocytes a rapid block of the autophagic flux and a consequent increased expression of LC3 and p62 which can be observed both in cultured astrocytes and in the brain of intoxicated animals. Conversely, in microglia autophagy was not impaired in the same conditions and p62 accumulation was not observed neither in vitro primary cultures, nor in brain sections of TMT-treated rats. The protein p62 (also known as SQTM1) is known to be selectively degraded through autophagy and its accumulation activates the transcription factor Nrf2 by sequestering Keap1 (2). To note the block of autophagy has been reported to exert an immunosopressive effect in macrophages (3). Thus, the impairment of autophagy in astrocytes could be related to their limited production of pro-inflammatory cytokines and nitric oxide respect to microglia observed after TMT treatment. This work was supported by grant from Ricerca Scientifica 2013 to L.F
    • …
    corecore