132 research outputs found

    CuSiO_3 : a quasi - one - dimensional S=1/2 antiferromagnetic chain system

    Full text link
    CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}\cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility, magnetization and specific heat measurements on powder samples. The magnetic susceptibility \chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (\alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at \mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3

    Critical properties of 1-D spin 1/2 antiferromagnetic Heisenberg model

    Full text link
    We discuss numerical results for the 1-D spin 1/2 antiferromagnetic Heisenberg model with next-to-nearest neighbour coupling and in the presence of an uniform magnetic field. The model develops zero frequency excitations at field dependent soft mode momenta. We compute critical quantities from finite size dependence of static structure factors.Comment: talk given by H. Kr{\"o}ger at Heraeus Seminar Theory of Spin Lattices and Lattice Gauge Models, Bad Honnef (1996), 20 pages, LaTeX + 18 figures, P

    Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model

    Full text link
    We study the threshold temperature for pairwise thermal entanglement in the spin-1/2 isotropic Heisenberg model up to 11 spins and find that the threshold temperature for odd and even number of qubits approaches the thermal dynamical limit from below and above, respectively. The threshold temperature in the thermodynamical limit is estimated. We investigate the many-particle entanglement in both ground states and thermal states of the system, and find that the thermal state in the four-qubit model is four-particle entangled before a threshold temperature.Comment: 4 pages with 1 fig. More discussions on many-particle ground-state and thermal entanglement in the multiqubit Heisenberg model from 2 to 11 qubits are adde

    Next-to-Leading Order Cross Sections for Tagged Reactions

    Get PDF
    We extend the phase space slicing method of Giele, Glover and Kosower for performing next-to-leading order jet cross section calculations in two important ways: we show how to include fragmentation functions and how to include massive particles. These extensions allow the application of this method to not just jet cross sections but also to cross sections in which a particular final state particle, including a DD or BB-meson, is tagged.Comment: 36 pages, Latex Small corrections to text. To appear in Phys. Rev.

    Thermodynamic Properties of the Dimerised and Frustrated S=1/2 Chain

    Full text link
    By high temperature series expansion, exact diagonalisation and temperature density-matrix renormalisation the magnetic susceptibility χ(T)\chi(T) and the specific heat C(T)C(T) of dimerised and frustrated S=1/2S=1/2 chains are computed. All three methods yield reliable results, in particular for not too small temperatures or not too small gaps. The series expansion results are provided in the form of polynomials allowing very fast and convenient fits in data analysis using algebraic programmes. We discuss the difficulty to extract more than two coupling constants from the temperature dependence of χ(T)\chi(T).Comment: 14 pages, 13 figures, 4 table

    The microscopic spin-phonon coupling constants in CuGeO_3

    Full text link
    Using RPA results, mean field theory, and refined data for the polarization vectors we determine the coupling constants of the four Peierls-active phonon modes to the spin chains of CuGeO_3. We then derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the angles between bonds. Our values are consistent with microscopic theories and various experimental results. We discuss the applicability of static approaches to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press

    Sr2V3O9 and Ba2V3O9: quasi one-dimensional spin-systems with an anomalous low temperature susceptibility

    Full text link
    The magnetic behaviour of the low-dimensional Vanadium-oxides Sr2V3O9 and Ba2V3O9 was investigated by means of magnetic susceptibility and specific heat measurements. In both compounds, the results can be very well described by an S=1/2 Heisenberg antiferromagnetic chain with an intrachain exchange of J = 82 K and J = 94 K in Sr2V3O9 and Ba2V3O9, respectively. In Sr2V3O9, antiferromagnetic ordering at T_N = 5.3 K indicate a weak interchain exchange of the order of J_perp ~ 2 K. In contrast, no evidence for magnetic order was found in Ba2V3O9 down to 0.5 K, pointing to an even smaller interchain coupling. In both compounds, we observe a pronounced Curie-like increase of the susceptibility below 30 K, which we tentatively attribute to a staggered field effect induced by the applied magnetic field. Results of LDA calculations support the quasi one-dimensional character and indicate that in Sr2V3O9, the magnetic chain is perpendicular to the structural one with the magnetic exchange being transferred through VO4 tetrahedra.Comment: Submitted to Phy. Rev.

    The fully differential single-top-quark cross section in next-to-leading order QCD

    Get PDF
    We present a new next-to-leading order calculation for fully differential single-top-quark final states. The calculation is performed using phase space slicing and dipole subtraction methods. The results of the methods are found to be in agreement. The dipole subtraction method calculation retains the full spin dependence of the final state particles. We show a few numerical results to illustrate the utility and consistency of the resulting computer implementations.Comment: 37 pages, latex, 2 ps figure

    An illustrated key to male Actinote from Southeastern Brazil (Lepidoptera, Nymphalidae)

    Full text link
    • …
    corecore