41 research outputs found

    A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles

    Get PDF
    AbstractThe most remarkable difference between electric vehicles (EVs) and conventional ones is the fuel burning dependency of the internal combustion engine, while the emerging EVs operate on electric motors. These alternations create staggering shifts in both lubricants' market demand and performance specifications. Lubricants for electrical powertrain constitutes greases, transmission oils, and lubricants for auxiliary systems and do not rely on engine oils as internal combustion vehicles. The new standards will be more focused on lubricants' electrical properties such as breakage voltage and conductivity, coupled with tribological performance under high rpm, corrosion resistance and thermal management benchmarks. This paper thematically reviews the different studies performed with nanolubricants, and how they match EVs' operational requirements. Conclusions from this study can be considered as guidelines for the potential application of nanolubricants in EVs and possible future research that can be accomplished on the topic

    Mécanismes de lubrification des nanoparticules à structure Fullerène (approche multi-échelle)

    Get PDF
    Les fullerènes de bisulfure métallique de type ( M eS2 , où Me= Mo et W) rencontrent un intérêt croissant du fait de leurs pouvoirs anti usure et réducteur de frottement en régime de lubrification limite. Les propriétés tribologiques de ces nanoparticules, dépendent à la fois de leurs caractéristiques intrinsèques (structure, morphologie, taille, ... ), des conditions de sollicitations (nature des surfaces, pression, température, ... ) ainsi que du cocktail d'additifs présent dans une formulation d'huile moteur. La compréhension de l'origine de ces propriétés passe obligatoirement par une parfaite connaissance du mode d'action des nanoparticules. L'objectif de ce travail de thèse est d identifier les paramètres pouvant avoir une influence sur le comportement des nanoparticules à l échelle nanométrique et de faire le lien entre ce comportement, les mécanismes de lubrification des nanoparticules, et leurs propriétés tribologiques. Afin de répondre à cet objectif nous avons adopté une approche multi échelle qui consiste dans un premier temps à étudier le comportement de fullerènes individuels (IF - M eS2 , ou Me= Mo et W) en cours de sollicitation. Ainsi grâce à une méthodologie expérimentale originale couplant la technique de nano indentation à une observation in situ dans un microscope électronique à transmission haute résolution (HRMET), nous avons visualisé pour la toute première fois et en temps réelle comportement de nanoparticules individuelles d if- M eS2 (Me= Mo et W) sollicitées en compression et/ou en cisaillement dans un contact dynamique. Cette étude a permis d'identifier l'influence des caractéristiques intrinsèques des fullerènes sur leur réponse à l'échelle nanométrique et d'estimer des pressions de contact pour lesquelles le fullerène s'exfolie, roule ou glisse dans le contact. Nous nous sommes ensuite intéressés aux mécanismes de lubrification des fullerènes en dispersion dans une base lubrifiante, en condition de lubrification limite. En se basant sur des analyses XPS et des observations MEB et MET des tribofilms et des débris d'usure générés à l'issu d'essais de frottement réalisés dans trois contacts de nature différente (acier, alumine et DLC), nous avons clairement montré que les propriétés lubrifiantes des nanoparticules d'IF - M eS2 (Me= Mo et W) dépendaient à la fois de leurs caractéristiques intrinsèques et de la nature des surfaces frottantes. Ainsi un lien a été établi entre le comportement des fullerènes à l'échelle nanométrique et leur mode d'action dans un contact tribologique. Enfin, l'influence de la mise en dispersion des nanoparticules sur leurs propriétés tribologiques a été étudiée. Les propriétés tribologiques des nanoparticules dans une huile moteur ont été également évaluées. Deux approches expérimentales de type 'Bottom up' et 'Top dawn'ont été adoptées afin d'évaluer les interactions entre les nanoparticules et l'ensemble des additifs présents dans une huile complétement formulée. L'influence de la température sur les propriétés tribologiques des nanoparticules a été également abordée.Inorganic Fullerene-(IF) like nanoparticles made of metal dichalcogenides ( M eS2 , Me= Mo and W)continue to attract an increasing interest as friction modifiers and anti-wear additives in liquid lubricant. Their efficiency as lubricant additive strongly depends on intrinsic properties of the nanoparticles (structure, morphology, size ... ), tribological conditions (nature of rubbing surface, pressure, temperature ... ) and also on the package of additives present in the full y formulated engine oil. Thus the control and the optimization of these properties require a perfect knowledge of the lubrication mechanisms of these nanoparticles. The aim of this work is to identify the parameters which influence the behavior of the nanoparticles at the nano-scale and to establish a correlation between this behavior, the lubrication mechanisms of nanoparticles and their tribological properties observed at macro-scale. For this aim, we have chosen a multi-scale approach, which firstly consists in studying the behavior of individual fullerenes (IF- M eS2, Me= Mo and W) during mechanical solicitation. Therefore, thanks to a new in situ TEM technique including nanoindentation, we have visualized the behavior of individual fullerenes in real time during nana-compression and nano-sliding tests. These results allowed us to identify the influence of the intrinsic characteristics of nanoparticles on their response at the nano-scale and to estimate critical values of pressure for rolling, sliding, exfoliation and failure of individual IF - M eS2 particles (Me= Mo and W).Secondly, we focused on the lubrication mechanisms of fullerenes when they are dispersed in base oil in boundary lubrication. The tribofilms and the wear particles obtained after friction tests at three different rubbing surfaces (steel, alumina and DLC), were studied using XPS analyses, SEM and TEM observations. We have clearly shown that the lubricating properties of nanoparticles depend both on their intrinsic properties and on the nature of the contact. Thereby, a correlation between the behavior of single nanoparticles at nano-scale and their lubricating properties under boundary lubrication was established. Finally, the influence of the dispersant on the tribological properties of the nanoparticles was investigated. The tribological properties of nanoparticles in fully formulated engine oil were also evaluated. Two experimental methods based on a 'Bottomup' and a 'top-dawn' approach were adopted to evaluate the interactions between nanoparticles and all the additives in fully formulated oil. The influence of the temperature on the tribological properties of the nanoparticles was also discussed.LYON-Ecole Centrale (690812301) / SudocSudocFranceF

    Comportement tribologique et analyses in-situ de polyphosphates de zinc (apport de la spectroscopie Raman)

    Get PDF
    Le dialkyldithiophosphate de zinc ( ZDDP ) est un additif anti-usure habituellement utilisé dans les lubrifiants moteurs. Dans des conditions sévères de frottement, les molécules de ZDDP forment sur les surfaces métalliques un film, appelé tribofilm, qui protège ces surfaces de l'adhésion et de l'abrasion. Les tribofilms sont principalement composés de polyphosphates de zinc dont la longueur des chaînes varie progressivement sur la hauteur du film. On trouve les chaînes de phosphate les plus courtes à la surface du métal et les chaînes de phosphate les plus longues au sommet du film. Plusieurs études ont été menées afin de comprendre le mécanisme par lequel l'additif peut conduire à la formation de ce gradient de phosphate. Pour améliorer la compréhension de ce mécanisme, nous nous concentrons dans cette étude sur l'influence de la pression, du cisaillement, de la nature des surfaces et de la température sur des composés de type orthophosphate de zinc et métaphosphate de zinc, utilisés pour modéliser le tribofilm de ZDDP. Des tests tribologiques ont été réalisés en régime de lubrification limite à partir de dispersions de ces polyphosphates de zinc dans de l'huile de base. L'effet de la pression seule a été étudié à l'aide d'une cellule à enclumes de diamant (CED) afin de découpler son effet de celui du cisaillement. La spectroscopie Raman a été utilisée pour suivre in-situ ou ex-situ, les changements de structures des poudres de polyphosphate de zinc. Ces expériences ont été réalisées sur ces composés afin d'identifier précisément la contrainte qui conduit à ce gradient de phosphate au sein d'un tribofilm. La pression seule, à induit uniquement des désordres structurels au sein des polyphosphates de zinc. Une dimérisation mineure a été observée pour l'orthophosphate de zinc mais, est peu significative pour expliquer les changements structurels observés dans un tribofilm. Lors des tests tribologiques, les phosphates ont montré une capacité à former des tribofilms. Une dépolymérisation du métaphosphate de zinc à été observée a l'issue de ces tests. Les grandes contraintes et conditions de déformation des essais tribologiques sont nécessaires pour induire une réaction tribochimique entre le métaphosphate de zinc et l'oxyde de fer conduisant à une dépolymérisation du phosphate dans le tribofilm. La réaction anti-usure et la formation de tribofilm est favorisée par les hautes températures (120 C), et par certaines formes d'oxydes de fer.Zinc dialkyldithiophosphate (ZDDP) is an anti-wear additive, commonly used in engine lubricants. Under severe conditions of friction, it forms a tribofilm on steel surfaces. ZDDP tribofilm is mainly composed of zinc polyphosphates and its structure varies gradually over the height of the film: short phosphate chains at the metal surface and longer phosphate chains at the top of the film. Several studies have been conducted to understand the mechanism by which the additive may lead to the formation of this gradient of the phosphate chain length. The influence of pressure, shear stress, nature surfaces and temperature on the structure of zinc orthophosphate and zinc metaphosphate were investigated, to improve the understanding of their action mechanism. Friction tests were carried out in boundary lubrication regime from dispersions of zinc polyphosphates in base oil. The effect of pressure alone was investigated using a Diamond Anvil Cell (DAC) in order to dissociate from the shear contribution. Raman spectroscopy was used to follow in situ or ex situ structural changes of the zinc polyphosphate powders. The experiments were carried out on these compounds to identify precisely the impact of stresses on them. Pressure alone induces only disordering in the structure of zinc polyphosphates, with only minor dimerization of the chain length in phosphates, and does not contribute significantly to the observed structural changes in tribofilms. Tribofilms obtained with both polyphosphates display a depolymerization of the zinc metaphosphate. The severe stress and strain conditions of the tribological tests are necessary to induce a tribochemical reaction between zinc metaphosphate and iron oxide, leading to a depolymerization of the phosphate in the tribofilm. The tribochemical reaction and anti-wear tribofilm formation are significantly enhanced by the modest temperature increase from ambient to 120C, and by some kinds of iron oxides.LYON-Ecole Centrale (690812301) / SudocSudocFranceF

    Le pouvoir lubrifiant des nanotubes de carbone

    No full text
    Les exigences actuelles en terme de lubrification automobile imposent des formulations extrêmement complexes. Parmi tous les additifs présents dans l huile, on peut noter le dithiocarbamate de molybdène et le dithiophosphate de zinc, additifs à action tribologique, à base de soufre et de phosphore. Pour des raisons environnementales, il est important de diminuer nettement voire d éliminer la présence de ces deux éléments dans les huiles. Les matériaux à base de carbone présentent des propriétés tribologiques intéressantes mais n ont jamais été entièrement étudiés. Dans cette étude nous nous sommes intéressés aux propriétés lubrifiantes des nanotubes de carbone (NTCs). Des nanotubes multi-parois ont été dispersés dans l huile puis les propriétés rhéologiques et tribologiques des nanolubrifiants ont été étudiées. Nous nous sommes intéressés à leurs propriétés tribologiques dans deux régimes de lubrification : le régime limite et le régime élastohydrodynamique. Nous nous sommes tout d abord focalisés sur les propriétés rhéologiques du mélange huile/NTCs.Les nanotubes de carbone possèdent une tendance à s agréger sous la forme d un réseau de taille micrométrique ce qui résulte en une nette augmentation de viscosité de l huile de base. Cet effet épaississant pourrait éventuellement permettre aux NTCs de remplacer une partie de l Améliorant d Indice de Viscosité (AVI) habituellement additionné à l huile de base. Néanmoins, nous avons mis en évidence un effet antagoniste avec les autres additifs de lubrification, tel que le dispersant, qui pourrait être un problème pour une telle utilisation. Nous nous sommes ensuite intéressés aux propriétés des NTCs dans le régime limite de lubrification. Les NTCs présentent des propriétés réductrices de l usure et du frottement intéressantes sous certaines conditions. Les analyses effectuées laissent supposer un rôle du catalyseur dans le mécanisme de lubrification. Les nanotubes de carbone semblent d un grand intérêt car, ils possèdent également des propriétés tribologiques en régime élastohydrodynamique (EHD). Le mécanisme de formation des films lubrifiants a été étudié en fonction des paramètres concentrations et vitesses d entraînement: la propagation des agrégats de NTCs à travers le contact résulte en une augmentation locale de l épaisseur de film lubrifiant. De plus, une réduction de frottement et un décalage dans l apparition des premières traces d usure ont été observés à la suite d essais tribologiques. Le mécanisme d action des NTCs en régime de lubrification EHD est proposé dans cette partie. Cependant, les interactions entre les NTCs et les additifs présents dans les lubrifiants entièrement formulés doivent être étudiés pour optimiser la formulation de lubrifiant à base de nanotubes de carbone.The current requirements in automotive lubrication impose extremely complex formulation. Among all the additives present in oil, one can note the presence of molybdenum dithiocarbamateand zinc dithiophosphate, both tribological additives containing sulfur and phosphorous. For environmental reasons, it is important to reduce or eliminate the presence of these two elements contained in oil. Carbon based materials are expected to present interesting tribological properties but were never really fully investigated. In this study, we are being interested on the lubricant properties of nanometric Carbon NanoTubes (CNT). Multi wall carbon nanotube MWNTs have been dispersed in oil and the behaviour of the blends has been studied in terms of rheology and tribology. We investigated their friction properties in two regims of lubrification : boundary lubrification and elastohydrodynamic (EHD) lubrification. At first, we focused in rheological properties of the blend. Carbon NanoTubes (CNT) present the tendency to aggregate to form micrometric network and this results in an increase in the blend viscosity. This thickening effect could make it possible to replace part of the ViscosityIndex Improver traditionally added to base oil. Nevertheless we reported an antagonist effect with other additives such as dispersant which may be a problem for this purpose. Then we investigated lubricant properties of CNT in boundary regim. CNTs show interesting friction reducing and anti-wear properties in some conditions. The results obtained let suppose a role of the catalyst in the lubrication mechanism. CNT are also of great interest in reason of their potential tribological properties in EHD lubrification regim. The lubricant film formation has been investigated as a function of the speed and the CNT concentration : the propagation of the CNT through the contact results in a local increase in the film thickness. Moreover, a reduction in friction and a drift in the wear onset have been observed under controlled contact kinematics. A potentiel mechanism of lubrification is explained in this last part. However, the interaction between the carbon nanotubes and the other additives present in the fully formulated lubricant need to be carrefully investigated in order to be able in the future to optimise the formulation of new carbon nanotubes based lubricants.LYON-Ecole Centrale (690812301) / SudocSudocFranceF
    corecore