7 research outputs found

    Daily changes on seasonal ecophysiological responses of the intertidal brown macroalga Lessonia spicata: Implications of climate change

    Get PDF
    Global climate change is expected to have detrimental effects on coastal ecosystems, with impacts observable at the local and regional levels, depending on factors such as light, temperature, and nutrients. Shifts in dominance between primary producers that can capitalize on carbon availability for photosynthesis will have knock-on effects on marine ecosystems, affecting their ecophysiological responses and biological processes. Here, we study the ecophysiological vulnerability, photoacclimation capacity, and tolerance responses as ecophysiological responses of the intertidal kelp Lessonia spicata (Phaeophyceae, Laminariales) during a year through different seasons (autumn, winter, spring, and summer) in the Pacific Ocean (central Chile). Six different daily cycle experiments were carried out within each season. A battery of different biochemical assays associated with antioxidant responses and in-vivo chlorophyll a fluorescence parameter showed that during spring and summer, there was an increase in photosynthetic capacity in the macroalgae, although their responses varied depending on light and nutrient availability in the course of the year. Lessonia spicata showed maximal photosynthesis and a similar photoinhibition pattern in summer compared to the other seasons, and the contents of nitrate and phosphorous in seawater were less in winter. Thus, high irradiance during spring and summer displayed a higher maximal electron transport rate (ETRmax), irradiance of saturation (Ek), non-photochemical quenching (NPQmax), nitrogen and carbon contents, and photoprotector compound levels. Antioxidant activity increased also in summer, the seasonal period with the highest oxidative stress conditions, i.e., the highest level of hydrogen peroxide (H2O2). In contrast, under low irradiance, i.e., wintertime conditions, L. spicata demonstrated lower concentrations of the photosynthetic pigments such as chlorophyll a and carotenoids. Our study suggests that macroalgae that are subjected to increased irradiance and water temperature under lower nutrient availability mediated by seasonal changes (expected to worsen under climate change) respond with higher values of productivity, pigment contents, and photoprotective compounds. Thus, our findings strengthen the available evidence to predict that algae in the order Laminariales, specifically L. spicata (kelp), could better proliferate, with lower vulnerability and greater acclimation, than other marine species subject to future expected conditions associated with climate change.Financial and logistical support was granted by the project of Fondo Nacional de Desarrollo Científico y Tecnológico, Chile through grant Project FONDECYT, Chile N° 11180197, ANID, Chile - provided to Paula Celis - Plá

    MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Involvement in the Regulation of Detoxification Mechanisms

    Get PDF
    Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.</jats:p

    MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Influence on Metal Exclusion/Extrusion Mechanisms and Photosynthesis

    Get PDF
    There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.</jats:p

    Antarctic intertidal macroalgae under predicted increased temperatures mediated by global climate change: Would they cope?

    No full text
    The Antarctic Peninsula is one of the regions to be most affected by increase in sea surface temperatures (SSTs) mediated by Global Climate Change; indeed, most negative predictions imply an up to 6 °C increment by the end of the XXI century. Temperature is one of the most important factors mediating diversity and distribution of macroalgae, although there is still no consensus as to the likely effects of higher SSTs, especially for polar seaweeds. Some available information suggests that potential strategies to withstand future increases in SSTs will be founded upon the glutathione-ascorbate cycle and the induction of chaperone-functioning heat shock proteins (HSPs); however, their eventual role, even for general stress responses, is unclear. The intertidal green, brown and red macroalgae species Monostroma hariotii, Adenocystis utricularis and Pyropia endiviifolia, respectively, from King George Island, Antarctic Peninsula, were exposed to 2 °C (control) and 8 °C (climate change scenario) for up to 5 days (d). Photosynthetic activity (αETR and ETRmax, and EkETR), photoinhibition (Fv/Fm) and photoprotection processes (αNPQ, NPQmax, and EkNPQ) provided no evidence of negative ecophysiological effects. There were moderate increases in H2O2 production and levels of lipid peroxidation with temperature, results supported by stable levels of total glutathione and ascorbate pools, with mostly higher levels of reduced ascorbate and glutathione than oxidized forms in all species. Transcripts of P. endiviifolia indicated a general upregulation of all antioxidant enzymes and HSPs genes studied under warmer temperature, although with different levels of activation with time. This pioneering investigation exploring different levels of biological organization, suggested that Antarctic intertidal macroalgae may be able to withstand future rise in SSTs, probably slightly altering their latitudinal distribution and/or range of thermal tolerance, by exhibiting robust glutathione-ascorbate production and recycling, as well as the induction of associated antioxidant enzymatic machinery and the syntheses of HSPs.This work was financed and logistic support granted through the projects INACH (Chilean Antarctic Institute) RT_09_16 and RG_10_18 directed by C.A. Sáez and P.S.M. Celis-Plá, respectively. P. Huovinen and I. Gómez were funded by Fondap IDEAL 15150003, while C. Lavergne was funded by ANID FONDECYT Postdoctorado (#3180374) and Fernanda Rodríguez-Rojas by ANID FONDECYT Postdoctorado (#3180394)

    Seasonal Photoacclimation and Vulnerability Patterns in the Brown Macroalga Lessonia spicata (Ochrophyta)

    No full text
    Fluctuations in solar radiation are one of the key factors affecting productivity and survival in habitat forming coastal macroalgae, in this regard, photoacclimation has a direct impact on the vulnerability and the capacity of seaweed to withstand, for instance, radiation excess. Here, we study ecophysiological responses through photosynthetic activity measurements under time-dependent (one year) fluctuations in solar radiation in the brown macroalga L. spicata. The responses presented seasonal patterns, with an increase in photosynthetic capacity during summer, expressed in greater maximal electron transport rate (ETRmax) and diminished thermal dissipation (NPQmax). Moreover, we studied photoprotective compounds (phenolic compounds) and total antioxidant capacity, which demonstrated an increase during periods of high solar radiation. In addition, content of photosynthetic pigment (Chla, Chlc and Carotenoids) increased under greater solar irradiance. The L. spicata can accumulate as reservoir photoprotective and antioxidant substances to withstand periods of high solar irradiance. All ecophysiological and biochemical responses in L. spicata indicate high photoacclimation and low vulnerability in the species, especially during with greater levels of solar irradiance

    Physiological and metabolic responses to hypersalinity reveal interpopulation tolerance in the green macroalga Ulva compressa with different pollution histories

    No full text
    There is scarce investigation addressing interpopulation tolerance responses to address the influence of a history of chronic stress exposure, as that occurring in polluted environments, in photoautotrophs. We evaluated ecophysiological (photosynthetic activity) and metabolic (oxidative stress and damage) responses of two populations of green macroalga Ulva compressa from polluted (Ventanas) and non-polluted (Cachagua) localions of central Chile, and exposed to controlled hypersalinity conditions of 32 (control), 42, 62 and 82 psu (practical salinity units) for 6 hours (h), 48 h and 6 days (d). Both primary production (ETRmax) and photosynthetic efficiency (αETR) were generally higher in the population from Cachagua compared to Ventanas at all times and salinities. Moreover, at most experimental times and salinities the population from Ventanas had greater levels of H2O2 and lipid peroxidation that individuals from Cachagua. Total ascorbate was higher in the population of Cachagua than Ventanas at 42 and 82 psu after 6 and 48 h, respectively, while at 6 d concentrations were similar between both populations at all salinities. Total glutathione was greater in both populations after 6 h at all salinities, but at 48 h its concentrations were higher only in the population from Cachagua, a trend that was maintained at 6 d under 82 psu only. Reduced and oxidized ascorbate (ASC and DHA, respectively) and glutathione (GSH and GSSG, respectively) demonstrated similar patterns between U. compressa populations, with an increase oxidation with greater salinities but efficient recycling to maintain sufficient batch of ASC and GSH. When assessing the expression of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR), while the population of Ventanas displayed a general trend of upregulation with increasing salinities along the experiments, U. compressa from Cachagua revealed patterns of downregulation. Results demonstrated that although both populations were still viable after the applied hypersalinities during all experimental times, biological performance was usually more affected in the population from the Ventanas than Cachagua, likely due to a depressed baseline metabolism after a long history of exposition to environmental pollution.The authors thank financial support of projects DGI Regular CEA 01-1819, CORFO 19CTIGH-121349, and FONDECYT Postdoctorado 3180394

    Macroalgae metal-biomonitoring in Antarctica: Addressing the consequences of human presence in the white continent

    No full text
    Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.This work and logistic support were granted by the projects INACH (Chilean Antarctic Institute) RT_09_16, RG_10_18, FP_07–18 directed by C.A. Sáez, P.S.M. Celis-Plá and C. Lavergne, respectively. C. Lavergne was funded by the Chilean grant ANID Fondecyt #11201072 and F. Rodríguez-Rojas was funded by the Chilean grant ANID Fondecyt #3180394
    corecore