12 research outputs found

    hemi_soc_ND4_all-hap

    No full text
    Sequence alignment of Hemidactylus specimens from Socotra based on unique haplotype sequences of mitochondrial gene ND

    hemi_soc_prdx4_all-hap

    No full text
    Sequence alignment of Hemidactylus specimens from Socotra based on unique haplotype sequences of nuclear intron prdx

    GenBank accession numbers

    No full text
    GenBank accession numbers of Hemidactylus specimens analyzed in the study

    hemi_soc_mc1r_all-hap

    No full text
    Sequence alignment of Hemidactylus specimens from Socotra based on unique haplotype sequences of nuclear protein coding gene mc1

    Assessing the Threat of Amphibian Chytrid Fungus in the Albertine Rift: Past, Present and Future

    No full text
    <div><p><i>Batrachochytrium dendrobatidis</i> (<i>Bd</i>), the cause of chytridiomycosis, is a pathogenic fungus that is found worldwide and is a major contributor to amphibian declines and extinctions. We report results of a comprehensive effort to assess the distribution and threat of <i>Bd</i> in one of the Earth’s most important biodiversity hotspots, the Albertine Rift in central Africa. In herpetological surveys conducted between 2010 and 2014, 1018 skin swabs from 17 amphibian genera in 39 sites across the Albertine Rift were tested for <i>Bd</i> by PCR. Overall, 19.5% of amphibians tested positive from all sites combined. Skin tissue samples from 163 amphibians were examined histologically; of these two had superficial epidermal intracorneal fungal colonization and lesions consistent with the disease chytridiomycosis. One amphibian was found dead during the surveys, and all others encountered appeared healthy. We found no evidence for <i>Bd</i>-induced mortality events, a finding consistent with other studies. To gain a historical perspective about <i>Bd</i> in the Albertine Rift, skin swabs from 232 museum-archived amphibians collected as voucher specimens from 1925–1994 were tested for <i>Bd</i>. Of these, one sample was positive; an Itombwe River frog (<i>Phrynobatrachus asper</i>) collected in 1950 in the Itombwe highlands. This finding represents the earliest record of <i>Bd</i> in the Democratic Republic of Congo. We modeled the distribution of <i>Bd</i> in the Albertine Rift using MaxEnt software, and trained our model for improved predictability. Our model predicts that <i>Bd</i> is currently widespread across the Albertine Rift, with moderate habitat suitability extending into the lowlands. Under climatic modeling scenarios our model predicts that optimal habitat suitability of <i>Bd</i> will decrease causing a major range contraction of the fungus by 2080. Our baseline data and modeling predictions are important for comparative studies, especially if significant changes in amphibian health status or climactic conditions are encountered in the future.</p></div

    Predicted future habitat suitability and <i>Bd</i> distribution in 2080.

    No full text
    <p>A. Illustrates the predicted current distribution and risk of <i>Bd</i> to amphibians in 2015 using all locations in the modeling (<i>Bd</i> records obtained in this study and previous studies [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0145841#pone.0145841.ref029" target="_blank">29</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0145841#pone.0145841.ref032" target="_blank">32</a>]). B. An average of the model output from the three General Circulation Models that shows the future distribution of where amphibians are likely to be at risk for <i>Bd</i> infection in 2080 under the A2a scenario. Our results predict a large range contraction of suitable habitat for <i>Bd</i> with future climate change.</p
    corecore