8 research outputs found

    Image embedding for denoising generative models

    Get PDF
    Denoising Diffusion models are gaining increasing popularity in the field of generative modeling for several reasons, including the simple and stable training, the excellent generative quality, and the solid probabilistic foundation. In this article, we address the problem of embedding an image into the latent space of Denoising Diffusion Models, that is finding a suitable “noisy” image whose denoising results in the original image. We particularly focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process. As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models, opening interesting perspectives on its exploration, the definition of semantic trajectories, and the manipulation/conditioning of encodings for editing purposes. A particularly interesting property highlighted by our research, which is also characteristic of this class of generative models, is the independence of the latent representation from the networks implementing the reverse diffusion process. In other words, a common seed passed to different networks (each trained on the same dataset), eventually results in identical images

    Precipitation nowcasting with generative diffusion models

    Full text link
    In recent years traditional numerical methods for accurate weather prediction have been increasingly challenged by deep learning methods. Numerous historical datasets used for short and medium-range weather forecasts are typically organized into a regular spatial grid structure. This arrangement closely resembles images: each weather variable can be visualized as a map or, when considering the temporal axis, as a video. Several classes of generative models, comprising Generative Adversarial Networks, Variational Autoencoders, or the recent Denoising Diffusion Models have largely proved their applicability to the next-frame prediction problem, and is thus natural to test their performance on the weather prediction benchmarks. Diffusion models are particularly appealing in this context, due to the intrinsically probabilistic nature of weather forecasting: what we are really interested to model is the probability distribution of weather indicators, whose expected value is the most likely prediction. In our study, we focus on a specific subset of the ERA-5 dataset, which includes hourly data pertaining to Central Europe from the years 2016 to 2021. Within this context, we examine the efficacy of diffusion models in handling the task of precipitation nowcasting. Our work is conducted in comparison to the performance of well-established U-Net models, as documented in the existing literature. Our proposed approach of Generative Ensemble Diffusion (GED) utilizes a diffusion model to generate a set of possible weather scenarios which are then amalgamated into a probable prediction via the use of a post-processing network. This approach, in comparison to recent deep learning models, substantially outperformed them in terms of overall performance.Comment: 21 pages, 6 figure

    A Sentiment and Emotion Annotated Dataset for Bitcoin Price Forecasting Based on Reddit Posts

    Get PDF
    Cryptocurrencies have gained enormous momentum in finance and are nowadays commonly adopted as a medium of exchange for online payments. After recent events during which GameStop’s stocks were believed to be influenced by WallStreetBets subReddit, Reddit has become a very hot topic on the cryptocurrency market. The influence of public opinions on cryptocurrency price trends has inspired researchers on exploring solutions that integrate such information in crypto price change forecasting. A popular integration technique regards representing social media opinions via sentiment features. However, this research direction is still in its infancy, where a limited number of publicly available datasets with sentiment annotations exists. We propose a novel Bitcoin Reddit Sentiment Dataset, a ready-to-use dataset annotated with state-of-the-art sentiment and emotion recognition. The dataset contains pre-processed Reddit posts and comments about Bitcoin from several domain-related subReddits along with Bitcoin’s financial data. We evaluate several widely adopted neural architectures for crypto price change forecasting. Our results show controversial benefits of sentiment and emotion features advocating for more sophisticated social media integration techniques. We make our dataset publicly available for research

    Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application of Machine Learning-based Forensics

    Full text link
    The rise of blockchain and distributed ledger technologies (DLTs) in the financial sector has generated a socio-economic shift that triggered legal concerns and regulatory initiatives. While the anonymity of DLTs may safeguard the right to privacy, data protection and other civil liberties, lack of identification hinders accountability, investigation and enforcement. The resulting challenges extend to the rules to combat money laundering and the financing of terrorism and proliferation (AML/CFT). As law enforcement agencies and analytics companies have begun to successfully apply forensics to track currency across blockchain ecosystems, in this paper we focus on the increasing relevance of these techniques. In particular, we offer insights into the application to the Internet of Money (IoM) of machine learning, network and transaction graph analysis. After providing some background on the notion of anonymity in the IoM and on the interplay between AML/CFT and blockchain forensics, we focus on anomaly detection approaches leading to our experiments. Namely, we analyzed a real-world dataset of Bitcoin transactions represented as a directed graph network through various machine learning techniques. Our claim is that the AML/CFT domain could benefit from novel graph analysis methods in machine learning. Indeed, our findings show that the Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) neural network types represent a promising solution for AML/CFT compliance

    Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application of Machine Learning-based Forensics

    No full text
    In shaping the Internet of Money, the application of blockchain and distributed ledger technologies (DLTs) to the financial sector triggered regulatory concerns. Notably, while the user anonymity enabled in this field may safeguard privacy and data protection, the lack of identifiability hinders accountability and challenges the fight against money laundering and the financing of terrorism and proliferation (AML/CFT). As law enforcement agencies and the private sector apply forensics to track crypto transfers across ecosystems that are socio-technical in nature, this paper focuses on the growing relevance of these techniques in a domain where their deployment impacts the traits and evolution of the sphere. In particular, this work offers contextualized insights into the application of methods of machine learning and transaction graph analysis. Namely, it analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques. The modeling of blockchain transactions as a complex network suggests that the use of graph-based data analysis methods can help classify transactions and identify illicit ones. Indeed, this work shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution. Notably, in this scenario GCN outperform other classic approaches and GAT are applied for the first time to detect anomalies in Bitcoin. Ultimately, the paper upholds the value of public-private synergies to devise forensic strategies conscious of the spirit of explainability and data openness

    Deep image prior inpainting of ancient frescoes in the Mediterranean Alpine arc

    No full text
    20 pages, 12 figuresThe unprecedented success of image reconstruction approaches based on deep neural networks has revolutionised both the processing and the analysis paradigms in several applied disciplines. In the field of digital humanities, the task of digital reconstruction of ancient frescoes is particularly challenging due to the scarce amount of available training data caused by ageing, wear, tear and retouching over time. To overcome these difficulties, we consider the Deep Image Prior (DIP) inpainting approach which computes appropriate reconstructions by relying on the progressive updating of an untrained convolutional neural network so as to match the reliable piece of information in the image at hand while promoting regularisation elsewhere. In comparison with state-of-the-art approaches (based on variational/PDEs and patch-based methods), DIP-based inpainting reduces artefacts and better adapts to contextual/non-local information, thus providing a valuable and effective tool for art historians. As a case study, we apply such approach to reconstruct missing image contents in a dataset of highly damaged digital images of medieval paintings located into several chapels in the Mediterranean Alpine Arc and provide a detailed description on how visible and invisible (e.g., infrared) information can be integrated for identifying and reconstructing damaged image regions

    Deep image prior inpainting of ancient frescoes in the Mediterranean Alpine arc

    No full text
    Abstract The unprecedented success of image reconstruction approaches based on deep neural networks has revolutionised both the processing and the analysis paradigms in several applied disciplines. In the field of digital humanities, the task of digital reconstruction of ancient frescoes is particularly challenging due to the scarce amount of available training data caused by ageing, wear, tear and retouching over time. To overcome these difficulties, we consider the Deep Image Prior (DIP) inpainting approach which computes appropriate reconstructions by relying on the progressive updating of an untrained convolutional neural network so as to match the reliable piece of information in the image at hand while promoting regularisation elsewhere. In comparison with state-of-the-art approaches (based on variational/PDEs and patch-based methods), DIP-based inpainting reduces artefacts and better adapts to contextual/non-local information, thus providing a valuable and effective tool for art historians. As a case study, we apply such approach to reconstruct missing image contents in a dataset of highly damaged digital images of medieval paintings located into several chapels in the Mediterranean Alpine Arc and provide a detailed description on how visible and invisible (e.g., infrared) information can be integrated for identifying and reconstructing damaged image regions

    Development of microparticles for oral administration of the non-conventional radical scavenger IAC and testing in an inflammatory rat model

    No full text
    The bis (1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC), is an innovative non- radical scavenger used with success in numerous disease models such as inflammation, neurological disorders, hepatitis and diabetes. The pharmacological treatments have been performed by the intraperitoneal route of administration, representing to date, the main limit for the drug use. The aim of this study was to develop a delivery system that allows the oral administration of IAC while maintaining its therapeutic efficacy. Solid Lipid Microparticles (SLMs) containing a theoretical 18% (w/w) of IAC have been produced by the spray congealing technology; three formulations have been tested (A, B and C) using different low melting point carriers (stearic acid, Compritol\uae HD5ATO and carnauba wax) alone or in combination. All IAC loaded SLMs exhibited a spherical shape, encapsulation efficiency higher than 94% and particle size suitable for the oral route. Administered per os at different dosages in an inflammation rat model, all SLMs demonstrated their efficacy in reducing oedema and alleviating pain, compared to the gold standards Indomethacin and Paracetamol. These results suggested that the SLMs are an efficacious delivery system for the oral administration of IAC, potentially useful for the treatment of others diseases related to an over production of free radicals
    corecore