26 research outputs found

    Topological Order and Reflection Positivity

    Full text link
    The interplay between the two fundamental concepts of topological order and reflection positivity allows one to characterize the ground states of certain many-body Hamiltonians. We define topological order in an appropriate fashion and show that certain operators have positive expectation value in all ground states. We apply our method to vortex loops in a model relevant to topological quantum memories.Comment: 3 pages, 1 figur

    Majorana braiding with thermal noise

    Get PDF
    We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states (MBSs) are immobile, braiding MBSs within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.Comment: 6 pages, 3 figures, long version: arXiv: 1507.0089

    Long-Range Interaction of Spin-Qubits via Ferromagnets

    Full text link
    We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a ferromagnet. We derive an effective two-spin interaction Hamiltonian and estimate the coupling strength. We discuss the mechanisms of decoherence induced solely by the coupling to the ferromagnet and show that there is a regime where it is negligible. Finally, we present a sequence for the implementation of the entangling CNOT gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly promising application of our proposal is to atomistic spin-qubits such as silicon-based qubits and NV-centers in diamond to which existing coupling schemes do not apply.Comment: 6 pages, 7 pages of appendi

    Physical solutions of the Kitaev honeycomb model

    Full text link
    We investigate the exact solution of the honeycomb model proposed by Kitaev and derive an explicit formula for the projector onto the physical subspace. The physical states are simply characterized by the parity of the total occupation of the fermionic eigenmodes. We consider a general lattice on a torus and show that the physical fermion parity depends in a nontrivial way on the vortex configuration and the choice of boundary conditions. In the vortex-free case with a constant gauge field we are able to obtain an analytical expression of the parity. For a general configuration of the gauge field the parity can be easily evaluated numerically, which allows the exact diagonalization of large spin models. We consider physically relevant quantities, as in particular the vortex energies, and show that their true value and associated states can be substantially different from the one calculated in the unprojected space, even in the thermodynamic limit

    Quantum memory coupled to cavity modes

    Full text link
    Inspired by spin-electric couplings in molecular magnets, we introduce in the Kitaev honeycomb model a linear modification of the Ising interactions due to the presence of quantized cavity fields. This allows to control the properties of the low-energy toric code Hamiltonian, which can serve as a quantum memory, by tuning the physical parameters of the cavity modes, like frequencies, photon occupations, and coupling strengths. We study the properties of the model perturbatively by making use of the Schrieffer-Wolff transformation and show that, depending on the specific setup, the cavity modes can be useful in several ways. They allow to detect the presence of anyons through frequency shifts and to prolong the lifetime of the memory by enhancing the anyon excitation energy or mediating long-range anyon-anyon interactions with tunable sign. We consider both resonant and largely detuned cavity modes.Comment: 16 pages, 6 figure

    Methodology for bus layout for topological quantum error correcting codes

    Get PDF
    Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code.Comment: 11 pages, 12 figure

    Monte Carlo studies of the properties of the Majorana quantum error correction code: is self-correction possible during braiding?

    Get PDF
    The Majorana code is an example of a stabilizer code where the quantum information is stored in a system supporting well-separated Majorana Bound States (MBSs). We focus on one-dimensional realizations of the Majorana code, as well as networks of such structures, and investigate their lifetime when coupled to a parity-preserving thermal environment. We apply the Davies prescription, a standard method that describes the basic aspects of a thermal environment, and derive a master equation in the Born-Markov limit. We first focus on a single wire with immobile MBSs and perform error correction to annihilate thermal excitations. In the high-temperature limit, we show both analytically and numerically that the lifetime of the Majorana qubit grows logarithmically with the size of the wire. We then study a trijunction with four MBSs when braiding is executed. We study the occurrence of dangerous error processes that prevent the lifetime of the Majorana code from growing with the size of the trijunction. The origin of the dangerous processes is the braiding itself, which separates pairs of excitations and renders the noise nonlocal; these processes arise from the basic constraints of moving MBSs in 1D structures. We confirm our predictions with Monte Carlo simulations in the low-temperature regime, i.e. the regime of practical relevance. Our results put a restriction on the degree of self-correction of this particular 1D topological quantum computing architecture.Comment: Main text: 20 pages, Supplementary Material: 66 pages. Short version: arXiv:1505.0371

    Majorana states in inhomogeneous spin ladders

    Full text link
    We propose an inhomogeneous open spin ladder, related to the Kitaev honeycomb model, which can be tuned between topological and nontopological phases. In extension of Lieb's theorem, we show numerically that the ground state of the spin ladder is either vortex free or vortex full. We study the robustness of Majorana end states (MES) which emerge at the boundary between sections in different topological phases and show that while the MES in the homogeneous ladder are destroyed by single-body perturbations, in the presence of inhomogeneities at least two-body perturbations are required to destabilize MES. Furthermore, we prove that x, y, or z inhomogeneous magnetic fields are not able to destroy the topological degeneracy. Finally, we present a trijunction setup where MES can be braided. A network of such spin ladders provides thus a promising platform for realization and manipulation of MES
    corecore