235 research outputs found

    A Revision Control System for Image Editing in Collaborative Multimedia Design

    Full text link
    Revision control is a vital component in the collaborative development of artifacts such as software code and multimedia. While revision control has been widely deployed for text files, very few attempts to control the versioning of binary files can be found in the literature. This can be inconvenient for graphics applications that use a significant amount of binary data, such as images, videos, meshes, and animations. Existing strategies such as storing whole files for individual revisions or simple binary deltas, respectively consume significant storage and obscure semantic information. To overcome these limitations, in this paper we present a revision control system for digital images that stores revisions in form of graphs. Besides, being integrated with Git, our revision control system also facilitates artistic creation processes in common image editing and digital painting workflows. A preliminary user study demonstrates the usability of the proposed system.Comment: pp. 512-517 (6 pages

    RECODE: Revision Control for Digital Images

    Get PDF
    Revision control is a vital component in the collaborative development of artifacts such as software code and multimedia. While revision control has been widely deployed for text files, very few attempts to control the versioning of binary files can be found in the literature. This can be inconvenient for multimedia applications that use a significant amount of binary data, such as images, videos, meshes, and animations. Existing strategies such as storing whole files for individual revisions or simple binary deltas, respectively consume significant storage and complex semantic information. To overcome these limitations, in this paper we present RECODE, a revision control system for digital images. It stores revisions in the form of a DAG (directed acyclic graph) where nodes represent editing operations, and edges describe the spatial and temporal relationships between operations. Being integrated with GitHub, the largest project hosting platform, RECODE also facilitates the artistic creation process of distributed teams with different workflows that include image editing and digital painting. A preliminary user study was performed to assess the perceived usability of the proposed system

    Return current in hysteretic Josephson junctions: Experimental distribution in the thermal activation regime

    Get PDF
    We present an experimental study on the retrapping process of a hysteretic, high-quality Josephson junction; namely, we have measured the distribution of the values at which the junction switches back from the voltage state to the zero-voltage state, as a function of the applied magnetic field. While the opposite process (escape from the zero-voltage state) has been extensively studied in the past, both from the theoretical and the experimental point of view, little is found in the literature on the retrapping process. In terms of the tilted washboard potential, the process corresponds to the retrapping from the running state to a locked state in a potential well. The interest of the measurements is in the fact that the value of the return current can be directly related to the dissipation in the junction. While the deterministic behavior, experimentally measured through the I–V curve, appears to be in agreement with the theoretical predictions, even in minor details, the statistical behavior is strongly different from what is expected. The disagreement is found even in zero-applied magnetic field and it cannot be attributed to external noise in the system. From the experimental statistical properties, we find values for the effective dissipation much lower than those obtained from the deterministic curves, a result which could be of interest in experiments on the observation of macroscopic quantum phenomena

    Coronavirus Disease 2019 in Children.

    Get PDF
    Since its appearance in Wuhan in mid-December 2019, acute respiratory syndrome coronavirus 2 (SARS-CoV-2) related 19 coronavirus disease (COVID-19) has spread dramatically worldwide. It soon became apparent that the incidence of pediatric COVID-19 was much lower than the adult form. Morbidity in children is characterized by a variable clinical presentation and course. Symptoms are similar to those of other acute respiratory viral infections, the upper airways being more affected than the lower airways. Thus far, over 90% of children who tested positive for the virus presented mild or moderate symptoms and signs. Most children were asymptomatic, and only a few cases were severe, unlike in the adult population. Deaths have been rare and occurred mainly in children with underlying morbidity. Factors as reduced angiotensin-converting enzyme receptor expression, increased activation of the interferon-related innate immune response, and trained immunity have been implicated in the relative resistance to COVID-19 in children, however the underlying pathogenesis and mechanism of action remain to be established. While at the pandemic outbreak, mild respiratory manifestations were the most frequently described symptoms in children, subsequent reports suggested that the clinical course of COVID-19 is more complex than initially thought. Thanks to the experience acquired in adults, the diagnosis of pediatric SARS-CoV-2 infection has improved with time. Data on the treatment of children are sparse, however, several antiviral trials are ongoing. The purpose of this narrative review is to summarize current understanding of pediatric SARS-CoV-2 infection and provide more accurate information for healthcare workers and improve the care of patients

    Superconducting tunable flux qubit with direct readout scheme

    Full text link
    We describe a simple and efficient scheme for the readout of a tunable flux qubit, and present preliminary experimental tests for the preparation, manipulation and final readout of the qubit state, performed in incoherent regime at liquid Helium temperature. The tunable flux qubit is realized by a double SQUID with an extra Josephson junction inserted in the large superconducting loop, and the readout is performed by applying a current ramp to the junction and recording the value for which there is a voltage response, depending on the qubit state. This preliminary work indicates the feasibility and efficiency of the scheme.Comment: 10 pages, 5 figure

    From the Concept of Being “the Boss” to the Idea of Being “a Team”: The Adaptive Co-Pilot as the Enabler for a New Cooperative Framework

    Get PDF
    The “classical” SAE LoA for automated driving can present several drawbacks, and the SAE-L2 and SAE-L3, in particular, can lead to the so-called “irony of automation”, where the driver is substituted by the artificial system, but is still regarded as a “supervisor” or as a “fallback mechanism”. To overcome this problem, while taking advantage of the latest technology, we regard both human and machine as members of a unique team that share the driving task. Depending on the available resources (in terms of driver’s status, system state, and environment conditions) and considering that they are very dynamic, an adaptive assignment of authority for each member of the team is needed. This is achieved by designing a technology enabler, constituted by the intelligent and adaptive co-pilot. It comprises (1) a lateral shared controller based on NMPC, which applies the authority, (2) an arbitration module based on FIS, which calculates the authority, and (3) a visual HMI, as an enabler of trust in automation decisions and actions. The benefits of such a system are shown in this paper through a comparison of the shared control driving mode, with manual driving (as a baseline) and lane-keeping and lane-centering (as two commercial ADAS). Tests are performed in a use case where support for a distracted driver is given. Quantitative and qualitative results confirm the hypothesis that shared control offers the best balance between performance, safety, and comfort during the driving task.This research was supported by the ECSEL Joint-Undertaking,which funded the PRYSTINE project under the Grant 783190

    Static flux bias of a flux qubit using persistent current trapping

    Full text link
    Qubits based on the magnetic flux degree of freedom require a flux bias, whose stability and precision strongly affect the qubit performance, up to a point of forbidding the qubit operation. Moreover, in the perspective of multiqubit systems, it must be possible to flux-bias each qubit independently, hence avoiding the traditional use of externally generated magnetic fields in favour of on-chip techniques that minimize cross-couplings. The solution discussed in this paper exploits a persistent current, trapped in a superconducting circuit integrated on chip that can be inductively coupled with an individual qubit. The circuit does not make use of resistive elements that can be detrimental for the qubit coherence. The trapping procedure allows to control and change stepwise the amount of stored current; after that, the circuit can be completely disconnected from the external sources. We show in a practical case how this works and how to drive the bias circuit at the required value.Comment: 5 figures submitted to Superconductor Science and Technolog

    Best practices, challenges and innovations in pediatrics in 2019

    Get PDF
    This paper runs through key progresses in epidemiology, pathomechanisms and therapy of various diseases in children that were issued in the Italian Journal of Pediatrics at the end of last year. Novel research and documents that explore areas such as allergy, critical care, endocrinology, gastroenterology, infectious diseases, neonatology, neurology, nutrition, and respiratory tract illnesses in children have been reported. These observations will help to control childhood illnesses
    • …
    corecore