129 research outputs found

    The complexity of anatomical systems

    Get PDF
    BACKGROUND: The conception of anatomical entities as a hierarchy of infinitely graduated forms and the increase in the number of observed anatomical sub-entities and structural variables has generated a growing complexity, thus highlighting new properties of organised biological matter. RESULTS: (1) Complexity is so pervasive in the anatomical world that it has come to be considered as a primary characteristic of anatomical systems. (2) Anatomical entities, when viewed at microscopic as well as macroscopic level of observation, show a different degree of complexity. (3) Complexity can reside in the structure of the anatomical system (having many diverse parts with varying interactions or an intricate architecture) or in its behaviour. Often complexity in structure and behaviour go together. (4) Complex systems admit many descriptions (ways of looking at the system) each of which is only partially true. Each way of looking at a complex system requires its own description, its own mode of analysis and its own breaking down of the system in different parts; (5) Almost all the anatomical entities display hierarchical forms: their component structures at different spatial scales or their process at different time scales are related to each other. CONCLUSION: The need to find a new way of observing and measuring anatomical entities, and objectively quantifying their different structural changes, prompted us to investigate the non-Euclidean geometries and the theories of complexity, and to apply their concepts to human anatomy. This attempt has led us to reflect upon the complex significance of the shape of an observed anatomical entity. Its changes have been defined in relation to variations in its status: from a normal (i.e. natural) to a pathological or altered state introducing the concepts of kinematics and dynamics of anatomical forms, speed of their changes, and that of scale of their observation

    On the Fractal Nature of Nervous Cell System

    Get PDF
    In a detailed study entitled “Morphological development of thick – tufted layer V pyramidal cells in the rat somatosensory cortex, ” an international team of scientists (Romand et al., 2011) reported a series of results pertaining to an analytical investigation of the morphological development of thick-tufted layer V pyramidal cells (also called the principal cells) in the rat somatosensory cortex. At the end of the Introduction Section, the Authors stated “all compartments of a TTL5 cell undergo different developmental changes, supporting the notion that multiple functional compartments receive different inputs an

    Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma

    Get PDF
    Despite advances in our cellular and molecular knowledge, hepatocellular carcinoma (HCC) remains one of the major public health problems throughout the world. It is now known to be highly heterogeneous: it encompasses various pathological entities and a wide range of clinical behaviors, and is underpinned by a complex array of gene alterations that affect supra-molecular processes. Four families of HCC tumour markers have been recently proposed: a) onco-fetal and glycoprotein antigens; b) enzymes and iso-enzymes; c) cytokines and d) genes. A category of tumour-associated antigens called cancer-testis (CT) antigens has been identified and their encoding genes have been extensively investigated. CT antigens are expressed in a limited number of normal tissues as well as in malignant tumors of unrelated histological origin, including the liver. Given that cancers are being recognized as increasingly complex, we here review the role of CT antigens as liver tumour biomarkers and their validation process, and discuss why they may improve the effectiveness of screening HCC patients and help in determining the risk of developing HCC

    The p50 NF-\u3baB subunit is a prognostic regulator of colorectal cancer-associated inflammation

    Get PDF
    In most tumors, tumor associated macrophages (TAMs) express an M2-skewed phenotype and are therefore associated with unfavorable prognosis. However, the impact of TAMs in colorectal cancer (CRC) development and outcome is still controversial. We first demonstrate, by parallel studies in colitis-associated cancer (CAC) and in genetically driven ApcMin mouse models, that p50 NF-\u3baB is essential for CRC development by restraining M1-dependent antitumor response. In absence of p50 mice developed fewer and smaller CRC lesions which express enhanced levels of M1/Th1 cytokines/chemokines including IL-12 and CXCL10, whose administration restrained CAC development in vivo. Moreover colons from p50-/- tumor bearers showed a reduced number of TAMs, as opposed to increased NK, NKT, CD8+ T cells and apoptotic cancer cells. Consistently, in CRC patients, high burden of p50+ TAMs was associated with decreased M1/Th1 inflammation and worse outcome indicating p50 as a new candidate for prognostic and target therapeutic intervention

    Prognostic and Predictive Cross-Roads of Microsatellite Instability and Immune Response to Colon Cancer

    Get PDF
    Understanding molecular features of colon cancer has shed light on its pathogenesis and progression. Over time, some of these features acquired clinical dignity and were incorporated in decision making. Namely, microsatellite instability (MSI) due to mismatch repair of defects, which primarily was adopted for the diagnosis of Lynch syndrome, became recognized as the biomarker of a different disease type, showing a less aggressive behavior. MSI tumors harbor high amounts of tumor infiltrating lymphocytes (TILs) due to their peculiar load in neoantigens. However, microsatellite stable colon cancer may also show high amounts of TILs, and this feature is as well associated with better outcomes. High TIL loads are in general associated with a favorable prognosis, especially in stage II colon cancer, and therein identifies a patient subset with the lowest probability of relapse. With respect to post-surgical adjuvant treatment, particularly in stage III, TILs predictive ability seems to weaken along with the progression of the disease, being less evident in high risk patients. Moving from cohort studies to the analysis of a series from clinical trials contributed to increase the robustness of TILs as a biomarker. The employment of high TIL densities as an indicator of good prognosis in early-stage colon cancers is strongly advisable, while in late-stage colon cancers the employment as an indicator of good responsiveness to post-surgical therapy requires refinement. It remains to be clarified whether TILs could help in identifying those patients with node-positive cancers to whom adjuvant treatment could be spared, at least in low-risk groups as defined by the TNM staging system

    Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver

    Get PDF
    BACKGROUND: Epigenetic changes during ageing and their relationship with cancer are under the focus of intense research. RASSF1A and NORE1A are novel genes acting in concert in the proapoptotic pathway of the RAS signalling. While NORE1A has not been previously investigated in the human liver, recent reports have suggested that RASSF1A is frequently epigenetically methylated not only in HCC but also in the cirrhotic liver. METHODS: To address whether epigenetic changes take place in connection to age and/or to the underlying disease, we investigated RASSF1A and NORE1A gene promoter methylation by conventional methylation specific PCR and Real-Time MSP in a series of hepatitic and non-hepatitic livers harboring regenerative/hyperplastic (cirrhosis/focal nodular hyperplasia), dysplastic (large regenerative, low and high grade dysplastic nodules) and neoplastic (hepatocellular adenoma and carcinoma) growths. RESULTS: In the hepatitic liver (chronic hepatitic/cirrhosis, hepatocellular nodules and HCC) we found widespread RASSF1A gene promoter methylation with a methylation index that increased from regenerative conditions (cirrhosis) to hepatocellular nodules (p < 0.01) to HCC (p < 0.001). In the non-hepatitic liver a consistent pattern of gene methylation was also found in both lesional (focal nodular hyperplasia and hepatocellular adenoma) and non-lesional tissue. Specifically, hepatocellular adenomas (HA) showed a methylation index significantly higher than that detected in focal nodular hyperplasia (FNH) (p < 0.01) and in non-lesional tissue (p < 0.001). In non-lesional liver also the methylation index gradually increased by ageing (p = 0.002), suggesting a progressive spreading of methylated cells over time. As opposed to RASSF1A gene promoter methylation, NORE1A gene was never found epigenetically alterated in both hepatitic and non-hepatitic liver. CONCLUSION: We have shown that in non-lesional, regenerative and neoplastic liver the RASSF1A gene is increasingly methylated, that this condition takes place as an age-related phenomenon and that the early setting and spreading over time of an epigenetically methylated hepatocyte subpopulation, might be related to liver tumorigenesis
    • …
    corecore