13 research outputs found

    Phylogenomic Analysis of the Gammaproteobacterial Methanotrophs (Order Methylococcales) Calls for the Reclassification of Members at the Genus and Species Levels

    Get PDF
    The order Methylococcales constitutes the methanotrophs – bacteria that can metabolize methane, a potent greenhouse gas, as their sole source of energy. These bacteria are significant players in the global carbon cycle and can produce value-added products from methane, such as biopolymers, biofuels, and single-cell proteins for animal feed, among others. Previous studies using single-gene phylogenies have shown inconsistencies in the currently established taxonomic structure of this group. This study aimed to determine and resolve these issues by using whole-genome sequence analyses. Phylogenomic analysis and the use of similarity indexes for genomic comparisons – average amino acid identity, digital DNA–DNA hybridization (dDDH), and average nucleotide identity (ANI) – were performed on 91 Methylococcales genomes. Results suggest the reclassification of members at the genus and species levels. Firstly, to resolve polyphyly of the genus Methylomicrobium, Methylomicrobium alcaliphilum, “Methylomicrobium buryatense,” Methylomicrobium japanense, Methylomicrobium kenyense, and Methylomicrobium pelagicum are reclassified to a newly proposed genus, Methylotuvimicrobium gen. nov.; they are therefore renamed to Methylotuvimicrobium alcaliphilum comb. nov., “Methylotuvimicrobium buryatense” comb. nov., Methylotuvimicrobium japanense comb. nov., Methylotuvimicrobium kenyense comb. nov., and Methylotuvimicrobium pelagicum comb. nov., respectively. Secondly, due to the phylogenetic affinity and phenotypic similarities of Methylosarcina lacus with Methylomicrobium agile and Methylomicrobium album, the reclassification of the former species to Methylomicrobium lacus comb. nov. is proposed. Thirdly, using established same-species delineation thresholds (70% dDDH and 95% ANI), Methylobacter whittenburyi is proposed to be a later heterotypic synonym of Methylobacter marinus (89% dDDH and 99% ANI). Also, the effectively but not validly published “Methylomonas denitrificans” was identified as Methylomonas methanica (92% dDDH and 100% ANI), indicating that the former is a later heterotypic synonym of the latter. Lastly, strains MC09, R-45363, and R-45371, currently identified as M. methanica, each represent a putative novel species of the genus Methylomonas (21–35% dDDH and 74–88% ANI against M. methanica) and were reclassified as Methylomonas sp. strains. It is imperative to resolve taxonomic inconsistencies within this group, first and foremost, to avoid confusion with ecological and evolutionary interpretations in subsequent studies

    The 2010 cholera outbreak in Haiti: How science solved a controversy

    Get PDF
    The article focuses on the genetic basis of the spread of cholera in Haiti which clarifies both the climatic and human transmission hypotheses explaining the origin of the disease after the January 12, 2010 earthquake. Topics include the role of the nonpathogenic Vibrio cholerae in cholera, studies supporting the human transmission hypothesis, and molecular study on the origin of Vibrio cholerae in the country. The use of genome sequencing as a tool for molecular epidemiology is considered

    A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules.

    Get PDF
    Cholera is a devastating diarrhoeal disease caused by certain strains of serogroup O1/O139 Vibrio cholerae. Mobile genetic elements such as genomic islands (GIs) have been pivotal in the evolution of O1/O139 V. cholerae. Perhaps the most important GI involved in cholera disease is the V. cholerae pathogenicity island 1 (VPI-1). This GI contains the toxin-coregulated pilus (TCP) gene cluster that is necessary for colonization of the human intestine as well as being the receptor for infection by the cholera-toxin bearing CTX phage. In this study, we report a GI (designated GIVchS12) from a non-O1/O139 strain of V. cholerae that is present in the same chromosomal location as VPI-1, contains an integrase gene with 94% nucleotide and 100% protein identity to the VPI-1 integrase, and attachment (att) sites 100% identical to those found in VPI-1. However, instead of TCP and the other accessory genes present in VPI-1, GIVchS12 contains a CRISPR-Cas element and a type VI secretion system (T6SS). GIs similar to GIVchS12 were identified in other V. cholerae genomes, also containing CRISPR-Cas elements and/or T6SS's. This study highlights the diversity of GIs circulating in natural V. cholerae populations and identifies GIs with VPI-1 recombination characteristics as a propagator of CRISPR-Cas and T6SS modules

    The Out-of-the-Delta Hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen

    Get PDF
    Cholera is a diarrheal disease that has changed the history of mankind, devastating the world with seven pandemics from 1817 to the present day. Although there is little doubt in the causative agent of these pandemics being Vibrio cholerae of the O1 serogroup, where, when, and how this pathogen emerged is not well understood. V. cholerae is a ubiquitous coastal species that likely existed for tens of thousands of years. However, the evolution of a strain capable of causing a large-scale epidemic is likely more recent historically. Here, we propose that the unique human and physical geography of low-lying river deltas made it possible for an environmental bacterium to evolve into a deadly human pathogen. Such areas are often densely populated and salt intrusion in drinking water frequent. As V. cholerae is most abundant in brackish water, its favored environment, it is likely that coastal inhabitants would regularly ingest the bacterium and release it back in the environment. This creates a continuous selection pressure for V. cholerae to adapt to life in the human gut

    How the Haiti cholera outbreak started.

    No full text
    <p>(A) MINUSTAH troops from Nepal were stationed in Haiti starting on October 8, 2010, and set up camp in Meille (red circle). Improper disposal of sewage led to the contamination of the Meille tributary, which connects downstream to the Latem River (red arrow). The first case of cholera occurred on October 12 along the Latem River in Mirebalais (orange circle), 2 km north of Meille. Water from the Latem River enters the Artibonite River (orange arrow), the major river that spans across Haiti, which flows downstream to St. Marc (blue arrow). The Artibonite River played a significant role in the rapid spread of cholera. During the early onset of the epidemic, reported cases were linked to proximity with the river. (B) A chronological timeline of events involving the Haiti cholera outbreak from July to December 2010.</p

    Steps in the evolution of the seventh pandemic <i>Vibrio cholerae</i>.

    No full text
    <p>Environmental <i>V. cholerae</i> indigenous in coastal waters can harbor genomic islands (GIs) by horizontal gene transfer, rendering it pathogenic. Pathogenesis of toxigenic (toxin-producing) <i>V. cholerae</i> critically depends on the production of the cholera toxin, which is responsible for the cholera symptoms, and the toxin-coregulated pilus (TCP). The genes for the cholera toxin (<i>ctx</i>) are from the filamentous bacteriophage, CTXφ, that has been incorporated into the genome. The genes in the TCP island encode factors necessary for the colonization of the small intestine in the human host after ingestion of contaminated water. Additionally, seventh pandemic strains are distinguishable from pre-seventh pandemic strains due to the acquisition of additional GIs, the <i>Vibrio</i> seventh pandemic (VSP) islands.</p

    Roseobacters in a sea of Poly- and Paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the "roseobacter clade" into a novel family, Roseobacteraceae fam. nov

    No full text
    The family Rhodobacteraceae consists of alphaproteobacteria that are metabolically, phenotypically, and ecologically diverse. It includes the roseobacter clade, an informal designation, representing one of the most abundant groups of marine bacteria. The rapid pace of discovery of novel roseobacters in the last three decades meant that the best practice for taxonomic classification, a polyphasic approach utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed. Early efforts for classification relied heavily on 16S rRNA gene sequence similarity and resulted in numerous taxonomic inconsistencies, with several poly- and paraphyletic genera within this family. Next-generation sequencing technologies have allowed whole-genome sequences to be obtained for most type strains, making a revision of their taxonomy possible. In this study, we performed whole-genome phylogenetic and genotypic analyses combined with a meta-analysis of phenotypic data to review taxonomic classifications of 331 type strains (under 119 genera) within the Rhodobacteraceae family. Representatives of the roseobacter clade not only have different environmental adaptions from other Rhodobacteraceae isolates but were also found to be distinct based on genomic, phylogenetic, and in silico-predicted phenotypic data. As such, we propose to move this group of bacteria into a new family, Roseobacteraceae fam. nov. In total, reclassifications resulted to 327 species and 128 genera, suggesting that misidentification is more problematic at the genus than species level. By resolving taxonomic inconsistencies of type strains within this family, we have established a set of coherent criteria based on whole-genome-based analyses that will help guide future taxonomic efforts and prevent the propagation of errors.Published versionThis work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada (to YB and RC); the Integrated Microbial Biodiversity program of the Canadian Institute for Advanced Research (to YB); and graduate student scholarships from Alberta Innovates – Technology Futures (to KL and FO), NSERC (Canada Graduate Scholarship – Master’s Program to KL), the University of Alberta Faculty of Graduate Studies and Research (Queen Elizabeth II Graduate Scholarship to KL), and the Bank of Montréal Financial Group (to FO)

    Simultaneous quantification of vibrio metoecus and vibrio cholerae with its O1 serogroup and toxigenic subpopulations in environmental reservoirs

    No full text
    Vibrio metoecus is a recently described aquatic bacterium and opportunistic pathogen, closely related to and often coexisting with Vibrio cholerae. To study the relative abundance and population dynamics of both species in aquatic environments of cholera-endemic and cholera-free regions, we developed a multiplex qPCR assay allowing simultaneous quantification of total V. metoecus and V. cholerae (including toxigenic and O1 serogroup) cells. The presence of V. metoecus was restricted to samples from regions that are not endemic for cholera, where it was found at 20% of the abundance of V. cholerae. In this environment, non-toxigenic O1 serogroup V. cholerae represents almost one-fifth of the total V. cholerae population. In contrast, toxigenic O1 serogroup V. cholerae was also present in low abundance on the coast of cholera-endemic regions, but sustained in relatively high proportions throughout the year in inland waters. The majority of cells from both Vibrio species were recovered from particles rather than free-living, indicating a potential preference for attached versus planktonic lifestyles. This research further elucidates the population dynamics underpinning V. cholerae and its closest relative in cholera-endemic and non-endemic regions through culture-independent quantification from environmental samples.Published versio

    Simultaneous Quantification of Vibrio metoecus and Vibrio cholerae with Its O1 Serogroup and Toxigenic Subpopulations in Environmental Reservoirs

    No full text
    Vibrio metoecus is a recently described aquatic bacterium and opportunistic pathogen, closely related to and often coexisting with Vibrio cholerae. To study the relative abundance and population dynamics of both species in aquatic environments of cholera-endemic and cholera-free regions, we developed a multiplex qPCR assay allowing simultaneous quantification of total V. metoecus and V. cholerae (including toxigenic and O1 serogroup) cells. The presence of V. metoecus was restricted to samples from regions that are not endemic for cholera, where it was found at 20% of the abundance of V. cholerae. In this environment, non-toxigenic O1 serogroup V. cholerae represents almost one-fifth of the total V. cholerae population. In contrast, toxigenic O1 serogroup V. cholerae was also present in low abundance on the coast of cholera-endemic regions, but sustained in relatively high proportions throughout the year in inland waters. The majority of cells from both Vibrio species were recovered from particles rather than free-living, indicating a potential preference for attached versus planktonic lifestyles. This research further elucidates the population dynamics underpinning V. cholerae and its closest relative in cholera-endemic and non-endemic regions through culture-independent quantification from environmental samples
    corecore