32 research outputs found

    Applying rare earth elements, Uranium, and 87Sr/86Sr to disentangle structurally forced confluence of regional groundwater resources: The case of the Lower Yarmouk Gorge

    Get PDF
    The conjoint discussion of tectonic features, correlations of element concentrations, δ18O, δD, and 87Sr/86Sr of groundwater leads to new insight into sources of groundwater, their flow patterns, and salinization in the Yarmouk Basin. The sources of groundwater are precipitation infiltrating into basaltic rock or limestone aquifers. Leaching of relic brines and dissolution of gypsum and calcite from the limestone host rocks generate enhanced salinity in groundwater in different degrees. High U(VI) suggests leaching of U from phosphorite-rich Upper Cretaceous B2 formation. Both very low U(VI) and specific rare earth element including yttrium (REY) distribution patterns indicate interaction with ferric oxyhydroxides formed during weathering of widespread alkali olivine basalts in the catchment area. REY patterns of groundwater generated in basaltic aquifers are modified by interaction with underlying limestones. Repeated sampling over 18 years revealed that the flow paths towards certain wells of groundwater varied as documented by changes in concentrations of dissolved species and REY patterns and U(VI) contents. In the Yarmouk Gorge, groundwater with basaltic REY patterns but high U(VI) and low Sr2+ and intermediate sulfate concentrations mainly ascends in artesian wells tapping a buried flower structure fault system crossing the trend of the gorge

    Influence of tectonic perturbations on the migration of long-lived radionuclides from an underground repository of radioactive waste

    Get PDF
    We studied the influence of tectonic perturbations on the transport of potentially mobilized radionuclides in groundwater from a deep-mined repository of solid high-level radioactive waste. The study was carried out by the method of mathematical modeling. Key parameters of the model correspond to the site of a potential federal repository in Russia. The groundwater flow domain is delimited on one side by a water divide (i.e., boundary of the catchment basin) and on the other side by the river bank. 2D simulations of groundwater flow and radionuclide migration are carried out along a vertical cross-section normal to the water divide. The groundwater flows through the rock massif, which encloses the repository, and discharges into the adjacent river. It is supposed that tectonic activity may form a fault which is parallel to the river bank. We analyzed how repository safety depends on the time of the fault emergence and on the distance between the repository and the fault. The results of our simulations suggest that: (1) emergence of a fault due to tectonic perturbations is not inevitably associated with a substantial growth of radionuclides released from the repository to the environment; (2) influence of the fault on the repository safety depends on the distance between the fault and the repository as well as on the time interval between the repository development and the fault emergence; (3) the influence of the fault on the repository safety can depend substantially on local elevations of the relief at the repository site

    Faulting patterns in the Lower Yarmouk Gorge potentially influence groundwater flow paths

    Get PDF
    Recent studies investigating groundwater parameters, e.g., heads, chemical composition, and heat transfer, argued that groundwater flow paths in the Lower Yarmouk Gorge (LYG) area are controlled by geological features such as faults or dikes. However, the nature of such features, as well as their exact locations, were so far unknown. In the present paper, we propose a new fault pattern in the LYG area by compiling and revising geological and geophysical data from the study area, including borehole information, geological map cross sections, and seismic data from the southern Golan Heights and northern Ajloun mountains. The presented pattern is composed of strike–slip and thrust faults, which are associated with the Dead Sea transform system and with the Kinnarot pull-apart basin. Compressional and tensional structures developed in different places, forming a series of fault blocks probably causing a non-uniform spatial hydraulic connection between them. This study provides a coarse fault-block model and improved structural constraints that serve as fundamental input for future hydrogeological modeling which is a suggested solution for an enigmatic hydrological situation concerning three riparian states (Syria, Jordan, and Israel) in a water-scarce region. In areas of water scarcity and transboundary water resources, transient 3-D flow simulations of the resource are the most appropriate solution to understand reservoir behavior. This is an important tool for the development of management strategies. However, those models must be based on realistic geometry, including structural features. The study at the LYG is intended to show the importance of such kinds of structural investigations for providing the necessary database in geologically stressed areas without sufficient data. Furthermore, during the hydrogeological investigation, a mismatch with results of pull-apart basin rim fault evolution studies was discovered. We argue that this mismatch may result from the settings at the eastern rim of the basin as the en-echelon changes from pull-apart basins (Dead Sea, Kinnarot, Hula) to a push-up ridge (Hermon)

    3D Hydro-mechanical Scenario Analysis to Evaluate Changes of the Recent Stress Field as a Result of Geological CO2 Storage

    Get PDF
    AbstractA numerical scheme coupling TOUGH2 and the hydro-mechanical simulator OpenGeoSys is used to evaluate the deformations and in situ stress changes induced by CO2 injection at a potential storage site located in the Northeast German Basin (NEGB). Scenario analysis shows that under the given assumptions the vertical displacement of the reservoir is negligible and significant changes in the recent stress field are limited to the surrounding of the injection well. The undertaken assessment is generally representative for CO2 storage in the NEGB. However, simulation results suggest that a larger modeling area needs to be considered to avoid boundary effects

    Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin

    Get PDF
    Hot and salty waters occur in the surroundings of the Lake Tiberias. Transient numerical simulations of thermally-driven flow without salinity effects show that mixed convection can explain the upsurge of thermal waters through permeable faults and the high temperature gradient in the Lower Yarmouk Gorge (LYG). It turns out that by including salinity effects, the flow patterns differ from those of a purely thermal regime because heavy brines dampen upward buoyant flow and convective cells. Accordingly, the fault permeability had to be increased to restore a good fit with the measured temperatures. This further supports the hypothesis that the high temperature gradient in the LYG is likely due to fractures or faults in that area. The thermohaline simulations also suggest that the derivatives of relic seawater brines are the major source of salinity. Deep brines leaching salt diapirs cannot reach the surface. However, the presence of local shallower salt bodies below the lake can potentially contribute to the salinity of the western spring and well waters, though in very small amount. This is in agreement with geochemical data according to which the major source of the brines of the Tiberias Basin represents seawater evaporation brines. Besides being of importance for understanding the hydrogeological processes that salinize Lake Tiberias, the presented simulations provide a real-case example illustrating large-scale fluid patterns due to only one source of buoyancy (heat) and those that are additionally coupled to salinity

    Torre Alfina Deep Geothermal Reservoir

    Get PDF
    The Castel Giorgio-Torre Alfina (CG-TA, central Italy) is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about  m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir

    Tectonic Regime as a Control Factor for Crustal Fault Zone (CFZ) Geothermal Reservoir in an Amagmatic System: A 3D Dynamic Numerical Modeling Approach

    Get PDF
    Crustal fault zones provide interesting geological targets for high-temperature geothermal energy source in naturally deep-fractured basement areas. Field and laboratory studies have shown the ability of these systems to let fluid flow down to the brittle–ductile transition. However, several key questions about exploration still exist, in particular the fundamental effect of tectonic regimes on fluid flow in fractured basement domains. Based on poro-elasticity assumption, we considered an idealized 3D geometry and realistic physical properties. We examined a model with no tectonic regime (benchmark experiment) and a model with different tectonic regimes, namely a compressional, an extensional and a strike-slip tectonic regime. Compared to the benchmark experiment, the results demonstrate that different tectonic regimes cause pressure changes in the fault/basement system. The tectonic-induced pressure changes affect convective patterns, onset of convection as well as the spatial extent of thermal plumes and the intensity of temperature anomalies. Driven by poro-elastic forces, temperature anomalies around vertical faults in a strike-slip tectonic regime have a spatial extent that should be considered in preliminary exploratory phases

    Sources of Salinization of Groundwater in the Lower Yarmouk Gorge, East of the River Jordan

    Get PDF
    In the Lower Yarmouk Gorge the chemical composition of regional, fresh to brackish, mostly thermal groundwater reveals a zonation in respect to salinization and geochemical evolution, which is seemingly controlled by the Lower Yarmouk fault (LYF) but does not strictly follow the morphological Yarmouk Gorge. South of LYF, the artesian Mukeihbeh well field region produces in its central segment groundwaters, an almost pure basaltic-rock type with a low contribution (<0.3 vol-%) of Tertiary brine, hosted in deep Cretaceous and Jurassic formations. Further distal, the contribution of limestone water increases, originating from the Ajloun Mountains in the South. North of the LYF, the Mezar wells, the springs of Hammat Gader and Ain Himma produce dominantly limestone water, which contains 0.14-3 vol-% of the Tertiary brine, and hence possesses variable salinity. The total dissolved equivalents, TDE, of solutes gained by water/rock interaction (WRI) and mixing with brine, TDEWRI+brine, amount to 10-70% of total salinity in the region comprising the Mukheibeh field, Ain Himma and Mezar 3 well; 55-70% in the springs of Hammat Gader; and 80-90% in wells Mezar 1 and 2. The type of salinization indicates that the Lower Yarmouk fault seemingly acts as the divide between the Ajloun and the Golan Heights-dominated groundwaters

    Advanced 3D TH and THM Modeling to Shed Light on Thermal Convection in Fault Zones With Varying Thicknesses

    Get PDF
    Fault zones exhibit 3D variable thickness, a feature that remains inadequately explored, particularly with regard to the impact on fluid flow. Upon analyzing an analytic solution, we examine 3D thermal-hydraulic (TH) dynamical models through a benchmark experiment, which incorporates a fault zone with thickness variations corresponding to realistic orders of magnitude. The findings emphasize an area of interest where vigorous convection drives fluid flow, resulting in a temperature increase to 150°C at a shallow depth of 2.7 km in the thickest sections of the fault zone. Moreover, by considering various tectonic regimes (compressional, extensional, and strike-slip) within 3D thermal-hydraulic-mechanical (THM) models and comparing them to the benchmark experiment, we observe variations in fluid pressure induced by poroelastic forces acting on fluid flow within the area of interest. These tectonic-induced pressure changes influence the thermal distribution of the region and the intensity of temperature anomalies. Outcomes of this study emphasize the impact of poroelasticity-driven forces on transfer processes and highlight the importance of addressing fault geometry as a crucial parameter in future investigations of fluid flow in fractured systems. Such research has relevant applications in geothermal energy, CO2 storage, and mineral deposits
    corecore