

Research Article

Applying Rare Earth Elements, Uranium, and ⁸⁷Sr/⁸⁶Sr to Disentangle Structurally Forced Confluence of Regional Groundwater Resources: The Case of the Lower Yarmouk Gorge

Christian Siebert⁽¹⁾,¹ Peter Möller,² Fabien Magri⁽¹⁾,^{3,4} Eyal Shalev⁽¹⁾,⁵ Eliahu Rosenthal⁽¹⁾,⁶ Marwan Al-Raggad,⁷ and Tino Rödiger⁸

¹Dept. of Catchment Hydrology, Helmholtz Centre for Environmental Research (UFZ), Halle/Saale, Germany ²Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Section 3.4, Potsdam, Germany

³Dept. of FA 2, Federal Office for the Safety of Nuclear Waste Management (BfE), Berlin, Germany

⁵Geological Survey of Israel (GSI), Jerusalem, Israel

⁶The School of Earth Sciences, Tel Aviv University, Tel Aviv, Israel

⁷The Inter-Islamic Network on Water Resources Development and Management (NWRDAM), Amman, Jordan

⁸Dept. of Computational Hydrosystems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany

Correspondence should be addressed to Christian Siebert; christian.siebert@ufz.de

Received 24 May 2019; Revised 23 September 2019; Accepted 3 October 2019; Published 3 December 2019

Guest Editor: Tanguy Robert

Copyright © 2019 Christian Siebert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The conjoint discussion of tectonic features, correlations of element concentrations, δ^{18} O, δ D, and 87 Sr/ 86 Sr of groundwater leads to new insight into sources of groundwater, their flow patterns, and salinization in the Yarmouk Basin. The sources of groundwater are precipitation infiltrating into basaltic rock or limestone aquifers. Leaching of relic brines and dissolution of gypsum and calcite from the limestone host rocks generate enhanced salinity in groundwater in different degrees. High U(VI) suggests leaching of U from phosphorite-rich Upper Cretaceous B2 formation. Both very low U(VI) and specific rare earth element including yttrium (REY) distribution patterns indicate interaction with ferric oxyhydroxides formed during weathering of widespread alkali olivine basalts in the catchment area. REY patterns of groundwater generated in basaltic aquifers are modified by interaction with underlying limestones. Repeated sampling over 18 years revealed that the flow paths towards certain wells of groundwater varied as documented by changes in concentrations of dissolved species and REY patterns and U(VI) contents. In the Yarmouk Gorge, groundwater with basaltic REY patterns but high U(VI) and low Sr²⁺ and intermediate sulfate concentrations mainly ascends in artesian wells tapping a buried flower structure fault system crossing the trend of the gorge.

1. Introduction

Since Roman times, the hot springs of Hamat Gader (HG), Israel, and Ain Himma, Jordan, in the Lower Yarmouk Gorge (LYG) were used for health care (Figure 1). At present, only Ein Balsam at HG is publically in use. Hydrogeological and hydrochemical studies of springs and well waters in the gorge reveal that groundwater of widely different composition discharges at short distances [1]. By major and minor elements and distribution patterns of rare earth elements including yttrium (henceforth termed REY), it was ascertained that thermal groundwater discharging through springs in the LYG is infiltrated in basaltic regions of the Hauran plateau, Syria [1]. Parts of these waters are mixed in various proportions with limestone water from Ajloun. The hot waters of Hamat Gader and Meizar get salinized by either mixing with relic seawater evaporation brines [2, 3] or leaching of evaporites. The recent study is based on 18 years of repeated sampling of wells and springs and reveals significant variations in REY patterns and element concentrations suggesting

⁴Hydrogeology, Freie Universität, Berlin, Germany

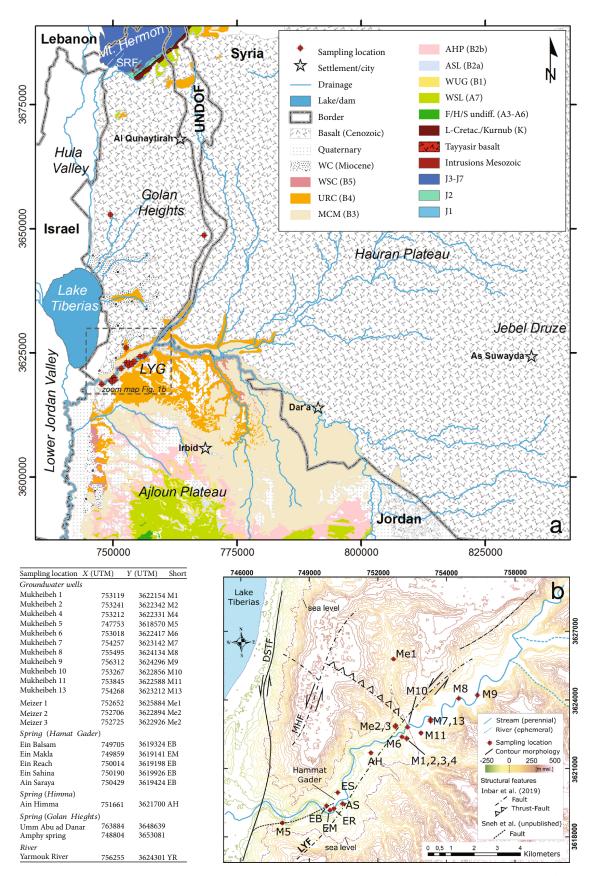


FIGURE 1: Overview of the study area, showing geological background (a) and sampling locations (b) including structural features recently introduced by Inbar et al. [15] and Sneh (unpublished).

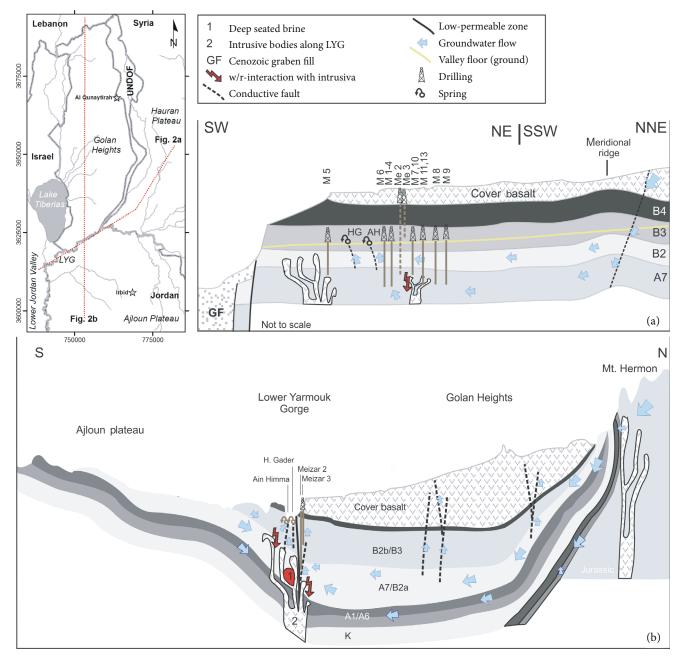


FIGURE 2: Schematic geological cross sections (not to scale). Section (a) starts in the Lower Jordan Valley, continues through the LYG, and branches into the Hauran NE-ward, while section (b) cuts from the Ajloun northward across the LYG and the Golan Heights into Mt. Hermon. The map shows the location of cross sections in red.

variation of flow paths and associated interactions with host rocks and leaching residual brines and evaporites.

The chemical and isotopic composition of the large amounts of fresh artesian groundwater produced in the Jordanian Mukheibeh well field contrasts with that of the saline groundwater in the Meizar wells and the springs of Hamat Gader. This gave rise to the conceptual model that the LYG is the surface expression of a fault zone, preventing transboundary flow [1]. 2D and 3D modelling supported that concept of continuous groundwater aquifers with the absence of transboundary groundwater exchange due to a zone of high hydraulic anisotropy underneath the gorge's centerline [4–7]. The gorge seemingly acts as a complex conduitbarrier system, along which groundwater from the Golan in the north and Ajloun in the south converges and drains towards the Lower Jordan Valley (Figure 2). Flow paths in the underground of the gorge possibly occur along faults oriented perpendicular to the major axis of the gorge [5, 6, 8].

Based on stratigraphic data [9, 10], topographic data, deep seismic survey data [11, 12], shallow fault mapping [13], and thickness irregularities of the Turonian and Senonian sequences in the study area [14–17] support the occurrence of strike-slip flower structure faults along and across the gorge creating a series of structural fault blocks and

numerous buried faults at close proximity to the Dead Sea Transform Fault (DSTF) (Figure 1).

Applying REY distribution patterns, U(VI), ⁸⁷Sr/⁸⁶Sr, and water isotopes in a new, complete, and synchronous set of sampled spring and well waters in 2016, we aim for joint discussion of hydrochemical and geological features to improve the knowledge of the sources of groundwater and of their flow paths.

After the introduction (Section 1), we will present the hydrogeological setting of the studied area (Section 2), the sample acquisition and the techniques used to analyze them (Section 3), the results on major and minor element, particularly on REY and U(VI), and Sr isotopes (Section 4), and a detailed discussion (Section 5). Section 6 concludes this study.

2. Hydrogeological Setting

Geographically, the Yarmouk drainage basin comprises (i) the volcanic Hauran plateau and the western flank of the Jebel Druze volcano [18], (ii) the southern and southeastern slopes of Hermon, (iii) the Golan Heights with numerous volcanic cones, (iv) the northern plunges of the Ajloun anticline, and (v) the Azraq-Dhuleil basin ENE of Ajloun (Figure 1(a)).

The Mediterranean climate in the Yarmouk basin causes rainy and cool winters and hot and dry summers. The distinct differences in altitude and the distance from the Mediterranean force strong gradients in annual precipitation. Highest values (up to 1300 mm/a) fall in the Hermon Massif and the highest parts of Jebel Druze; medium elevated regions such as the Hauran and Ajloun plateaus and the Golan Heights receive 600-800 mm/a, while the low-lying LYG and the xeric region SE of the surface drainage basin receive <500 mm/a only (e.g., [18–21]). The resulting recharge fractions are calculated to range from 0.06 to 0.1 [20, 22–24].

In the south of the Yarmouk River, geological formations dip NW-ward (Figure 2). Here, the oldest hydrogeological relevant formations comprise the highly karstified lime- and dolostones of the Upper Cretaceous A7 aquifer and the overlaying heavily fractured silicified limestones of the Eocene B2 aquifer, altogether forming the 160 m thick regional A7/B2 aquifer system (Figure 3). This system becomes efficiently confined due to its descent and the appearance of the covering B3 aquiclude. On top of the southern flank of the LYG, remnants of the B4 sequence form a local limestone aquifer.

All formations older than B4 continue in the underground of the Golan Heights syncline before they partly resurface in the foothills of the Hermon anticline [25]. Underneath the Golan Heights, Jurassic limestones form the base of the formations before they become uplifted in the Hermon anticline in the north (Figures 1(a) and 2(b)). Since the drainage basin extends into three nations with different geological terminologies. Figure 3 compiles the relevant parts of the stratigraphic columns for the entire region.

Morphologically, the Golan Heights is restricted southward by the LYG, westward by the Hula Valley and Lake Tiberias, northward by Wadi Sa'ar at the foothills of Mt.

Hermon, and eastward by Wadi Raqqad. The entire Golan Heights is unconformably overlain by Plio-Pleistocene cover basalts, which continue E- and SE-ward into the Hauran plateau, Jebel Druze, and Azraq-Dhuleil Basin and form the uppermost supraregional aquifer in the area [26, 27]. Within the Golan Heights, the thickness of the basalts varies with more than 750 m in the central part and less than 50 m along the LYG (Figure 2(b)) and B3 layers form the impervious base of the basaltic aquifer [28-30]. However, the basaltic aquifer is connected to underlying aquifers at certain locations [31], either where B3 was already eroded or where structurally prominent features of post-Pliocene age cut the formations [12, 28, 32, 33]. An aeromagnetic survey in N Jordan revealed a SW-NE lineament branching from the DSTF towards Hamat Gader in the LYG [34], which was later proven to be a fault by geological mapping (Sneh et al., unpublished) (Figure 1(b)).

The groundwater in the phreatic and shallow basaltic aquifer mainly follows the morphology. Within the Golan Heights, it flows W- and SW-ward towards the Hula Valley, the Lake Tiberias, and the LYG [28, 33]. In the east, a subterranean meridional ridge forms a water divide against the Hauran [19] (Figure 2(a)). The thin lava flows east of the water divide, hosts only modest amounts of groundwater, and discharges locally into incised wadis, e.g., the Raqqad. The basaltic cover of the Hauran plateau is mainly recharged at the elevated southeastern flanks of the Hermon Massif and western piedmont of Jebel Druze, from where the groundwater flows SE- and W-ward, respectively. The groundwater most probably converges in the central part of the Hauran and flows from there SW-ward towards the LYG. There, the observed groundwater of this study discharges either naturally at the valley floor through springs in Hamat Gader, Suraya, and Himma or artificially through the (mostly) artesian wells of Mukheibeh and Meizar, located in the flanks of the gorge, either north (Meizar wells) or south (Mukheibeh wells) (Figure 1(b)).

3. Analytical Procedures

The elements Ca²⁺, Mg²⁺, U(VI), and REY are determined by ICP-MS (Elan DRC-e). K⁺ and Na⁺ were analyzed by ICP-AES (Spectro Arcos) using matrix-adjusted standard solution for calibration. Cl⁻, Br⁻, and SO₄²⁻ are determined with Dionex ICS (AS18 column). The alkalinity is titrated to pH 4.3 with H₂SO₄ and given as HCO₃⁻.

To determine REY and U(VI), preconcentration is required. Therefore, about 41 of sample is filtered in the field by using a peristaltic pump coupled to 0.2 μ m filters (Sartorius, Germany). The samples are acidified by subboiled (index sbb) HCl, and 1 ml of Tm spike solution is added. At the same day, the samples are adjusted to pH = 2 using HCl_{sbb} and subsequently passed through preconditioned C₁₈ Sep-Pak cartridges (Waters, USA), loaded with an ethylhexyl phosphate (Merck, Germany) liquid ion exchanger, at a rate of 11/h. Thereafter, each cartridge is washed with 50 ml of 0.01 M HCl_{sbb} and subsequently eluted with 40 ml of 6 M HCl_{sbb} at a rate of 3 ml/min. The eluates are evaporated to incipient dryness, and the residues are dissolved in 1 ml of

System	Age		Group	1		Formation	,		Hydrogeological pro	perties	
	Period	GH/Mt.H	Ajloun	DB/H	GH/Mt.H	Ajloun	DB/H	Golan/Mt. Hermon	Ajloun		Damascus Basin/Hauran
uaternary	Quaternary				Yarmouk Basalt			Alkaline-olivine	Alkaline-olivine basalt		Gravel, gipseous marl, siltite, clay
	Pliocene				Cover basalt		n3	basalt		lts	Sandstone, siltite
sne					Bira/Gesher				Silicified limest., dolomite	Basalts	Alternation congl., marl, limest.
Neogene	Miocene	Kefar Giladi			Hordos	Waqqas conglomerate (WC) - Jordan Valley	n2	Conglomerates in siltand clay matrice	Marl, sand	Plateau	Limestone
				Jeribe	Lower basalt				Alkali olivine basalt]	Conglomerates in limy matrix
	Oligocene			Chilou	Susita/Fiq		n1		Marlst., sandy dolomite		Marl, clay, conglomerates
	Eocene			Jaddala		Wadi Shallalah chalk (WSC) (B5)	e5		Chalk, bituminous		Thick banked limestone, upper part chalky, marly
Paleogene	Locene	Avedat	1		Maresha/ Adulam	Umm Rijam (URC) (B4)	e4	Marl, chalk, limestone	chalky limest., chert beds	1	Massive limestone
Pal	Upper Maastricht- Paleocene		Belqa	Kermev Bardeh	Таqіуе	Muwaqqar chalk (MCM) (B3)	e1-e3		Micritic limest., bituminous (oil shale)]	Alternating chak, marl
	Masstrichtian	1			Ghareb	Al Hasa phosphorite (AHP) (B2-b)	m1, m2	Marly limestone, bituminous, chert,	Calcareous, phosphorite beds, limest., chalk, marl		Alternating chalk, marl, limest., cherts
	Campanian	Mt. Scopus		Soukhne	Mishash	Amman silicified limestone (ASL) (B2a)		phosphorite	Limestone., dolomite, chalky, phosphate, chert		
	Santonian			Š	Menuha	Wadi Umm Ghudran (WUG) (B1)	s		Massive chalk, limest., phosphatic sandst., chert		Chalk, marl
	Turonian					Wadi Es Sir Limest. (WSL) (A7)	t2	Limestone, dolomite,	Dolomitic limest., sandst., cherts	1	Banked limestone
	Cenomanian-	1			Bina	F/H/S-undifferentiated		marly limest.	Marl and gypsum	1	
	Turonian	Judea				Shueib (S) (A5-6)	t1		Siltstone, marly limest., dolomite	1	
Cretaceous]	Ajloun		Saknin	Hummar (H) (A4)		Dolomitic limestone	Dolomitic limestone, karstic limestone		
Creta				Judea				Karstic limest., chert			Banked limestone, partly
0	Cenomanian				D · H	Fuheis (F) (A3)	с	Chalk beds, thin dolost.	Calcareous siltst., marly lime-/ dolost., chalk beds		dolomite
					Deir Hanna				Glauconitic sandstone	1	
		W 1				Na'ur (NL) (A1-2)			Limest., dolomite		
	Albian	Kurnub	Kurnub	1	Yagur		ab	Dolomite, limestone	Sandstone	1	Marly limestone
		1		1	Yakhini	1		Sandstone			
	Aptian				Banias, Tayassir basalt	Subeihi (K2)		Basalts		1	Clayey sandstone, limestone intercalated
	Barremian		1			-	a1-a3			1	
	Hauterivian- Berriasian		1			Aarda (K1)	1			1	
	Malm				J6-J7 (Nahal Saar)		j5-j7	Limestone	Sandstone, siltstone, limestones	basalts	Limestone
5					J5 (Kidod)	1		Marl, shale		pač	Marl
Jurassic	Dogger	Arad	Zarqa		J4 (Hermon/ Zohar)	Azab	j2-j4	Limestone			Dolomitic limestone at base, limestone on top
	Lias	1			J1-J3	1	j1	Dolomite, limestone			Marl lignite, dolomite, sand- and limestone

FIGURE 3: Stratigraphic table of the hydrogeological formation in the Yarmouk Basin.

 $5 \text{ M HNO}_{3 \text{ sbb}}$ (Merck, Germany) and transferred into 10 ml volumetric flasks. 1 ml of spike solution is added which is used, if necessary, for drift corrections of the response factors during the ICP-MS measurements.

Stable isotopes of oxygen and hydrogen are determined in separate filtered samples (0.2 μ m) using laser cavity ringdown spectroscopy (Picarro L2120-i, USA) without further treatment of the water samples. The respective analytical precision is ±0.1‰ and ±0.8‰ for δ^{18} O and δ D, respectively. The results are reported relative to Vienna Standard Mean Ocean Water (VSMOW).

Analyses of ⁸⁷Sr/⁸⁶Sr in water samples were performed at TUBAF, Freiberg, Germany. Samples were prepared and analyzed after Tichomirova et al. [35] by applying TIMS (Finnigan MAT 262) with an acceptable relative error of $\pm 0.005\%$ for ⁸⁷Sr/⁸⁶Sr. Sr-isotope ratios are given in respect to NBS-987. To analyze Sr²⁺ in basaltic rock samples, rocks have been powdered to <150 μ m, pressed to pellets, and analyzed applying energy-dispersive X-ray fluorescence (EDXRF) (Spectro XEPOS HE 2000). Chemical and isotopic analyses are given in Tables 1–3.

4. Results

Depending on the sampling location, the results are classified in the following way: Mukheibeh well field (M1-M13), Ain Himma (AH), Hamat Gader springs (HG), Meizar wells (Me1-Me3), and the Yarmouk River (YR). Sampling locations, which have been repeatedly sampled, are indicated by the year of sampling given in parentheses. The Hebrew and Arabic term of springs is transliterated as Ein and Ain, respectively.

4.1. Major and Minor Element Correlations with Cl⁻. From the low-salinity Mukheibeh clusters, two (Figures 4(a)–4(f)) or one (Figures 4(g)–4(j)) mixing lines evolve with highsalinity end members. They indicate that two end member brines occur in the study area: one is salinizing the Meizar wells and Ain Himma and the other the springs of Hamat Gader (Ein Maqla, Ein Reach, Ein Balsam, and Ain Sarayah). The Ca²⁺ concentration in Ain Himma switches between the two trends, probably because the access point to sample the spring water within the increasingly ruined Himma resort

odwater vels Advaluelle MI (1) 73113 562343 ###### 7.12 65 28.14 809 51.8 56 30.7 0.69 39 72.5 54.3 Nukhelheh MI (1) 753119 562334 ###### 7.12 65 28.14 809 51.8 56 30 30.1 0.69 39 57.2 54.3 Nukhelheh MI (1) 753312 562333 ###### 7.1 65 38.8 97 51.8 56 30 30.2 33.4 55.4 57.3 Nukhelheh MI (10) 753312 562334 ###### 7.1 63 28.8 87 51.8 50 37.3 56.3 37.3 56.3 37.3 56.3 37.3 36.3 37.3 36.3 37.3 36.3 37.3 56.3 37.3 56.3 37.3 56.3 37.3 56.3 37.3 56.4 57.3 56.3 37.3 57.3 56.3 <td< th=""><th>Ð</th><th>Source</th><th>Abbr.</th><th>X</th><th>Y</th><th>Sampling Date</th><th>Hq</th><th>Eh</th><th>ling PH Eh Temp EC Alk Ca Mg K Sr Na Cl SC e PH mV °C μS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/</th><th>EC Al μS/cm</th><th>Alk</th><th>Ca l mg/l n</th><th>Mg mg/l r</th><th>K mg/l m</th><th>Sr 1 mg/l m</th><th>Na (mg/l m</th><th>Cl Sc mg/l m</th><th>4⁴</th><th>Br Ho mg/l n</th><th>HCO₃ mg/l r</th><th>U nmol/1</th><th>δ¹⁸O δ²F VSMOW</th><th>δ²H OW</th></td<>	Ð	Source	Abbr.	X	Y	Sampling Date	Hq	Eh	ling PH Eh Temp EC Alk Ca Mg K Sr Na Cl SC e PH mV °C μS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	EC Al μ S/cm	Alk	Ca l mg/l n	Mg mg/l r	K mg/l m	Sr 1 mg/l m	Na (mg/l m	Cl Sc mg/l m	4 ⁴	Br Ho mg/l n	HCO ₃ mg/l r	U nmol/1	δ ¹⁸ O δ ² F VSMOW	δ ² H OW
	Groundy	water wells																					
	01-128	Mukheibeh 1	M1 (01)	753119	3622154	#######	~	67	29.1	797		91.3						_	0.20 3	358	105.2	-5.65	-27.40
	13/803	Mukheibeh 2	M2 (13)	753243	3622340	#######	7.12	65	28.14	809		96						-	0.09 3	312	88.2	-5.64	-26.40
Mukhelichel M (13) 753209 3622333 ###### 71 63 28.8 807 5.18 96 29 3 051 38.5 55.4 577 Mukheliche M (16) 753212 3622317 ###### 70 11 67 753 362317 ###### 71 11 67 753 362317 ###### 71 11 67 753 362317 ###### 71 11 67 754 97 50 36 71 24 8 20 34 06 69 73 355 Mukheliche M (16) 753013 562417 ###### 71 11 67 5308 86 29 34 06 67 355 71 30 85 77 4 8 8 4 29 15 75 13 93 645 77 355 90 555 11 355409 362417 ###### 75 67 11 75 76 54 20 551 11 75 30 65 127 76 11 75 30 86 70 11 75 30 85 71 11 8 10 75 30 85 71 11 8 10 75 30 85 71 11 8 10 75 30 85 71 11 8 10 75 30 15 75 40 10 75 35 35 Mukheliche M M (16) 755403 362417 ###### 72 67 28 11 75 65 15 30 70 47 59 37 75 57 10 70 47 59 30 55 11 70 47 80 10 75 30 75 32 65 11 70 10 75 335 35 35 37 10 4.1 73 65 11 70 10 75 335 35 35 32288 ###### 72 67 28 117 76 54 20 15 74 0 94 45 61 72 44 10 Mukheliche H 1 MH (16) 75336 302384 ###### 72 67 28 117 76 34 72 25 37 0.9 47 59 30 520 Mukheliche H 1 MH (16) 75336 302380 ###### 72 67 28 117 74 22 24 21 8 10 72 74 10 72 75 74 94 75 75 74 94 75 75 74 94 75 75 74 94 75 75 74 95 45 31 245 Mukhelich 1 MH (16) 75326 302380 ###### 72 67 30 750 319 871 44 72 20 37 09 47 59 30 247 Mukhelich 1 MH (16) 75326 302394 ###### 72 64 77 66 200 366 177 Mukhelich 1 MH (16) 75326 302394 ###### 72 64 77 66 280 366 277 Mukhelich 1 MH (16) 75326 302394 ###### 72 64 11 78 74 10 37 74 32 12 74 93 78 71 24 25 37 13 27 93 38 10 72 74 10 73 98 16 74 75 76 20239 Mukhelich 1 MH (16) 75209 302394 ###### 72 66 11 73 47 100 366 17 74 44 75 16 74 10 72 94 10 72 94 10 72 74 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 72 94 10 97 95 113 88 10 94 10 97 95 110 95 113 94 10 94 10 72 94 10 94 10 94 10 97 95 110 94 95 110 94 10 10 10 10 10 10 10 10 10 10 10 10 10	16/08	Mukheibeh 2	M2 (16)	753241	3622342	#######	6.13	18	28.9	830									0.1 2	274	88.2	-5.38	-25.51
	13/802	Mukheibeh 4	M4 (13)	753209	3622333	#######	7.1	63	28.8	807			29						0	312	96.6	-5.26	-25.40
	16/09	Mukheibeh 4	M4 (16)	753212	3622331	#######	7.04	273	29.1	827								-	0.09 2	286	92.4	-5.50	-25.47
$\label{eq:matrix} Mukhelbeh $$ M6 (16) $753018 $562417 $##### 7.16 $-17 $385 $74 $4.8 $8 $29 $34 $0.66 $49 $733 $535 $$ Mukhelbeh $$ M8 (16) $75435 $563142 ###### 7.45 $-12 $449 $71 $42 $61 $27 $43 $66 $127 $335 $45 $71 $43 $65 $11 $33 $65 $66 $127 $$ Mukhelbeh $$ M8 (16) $75435 $563142 ###### 7.45 $-67 $49 $73 $49 $73 $43 $65 $65 $127 $$ Mukhelbeh $$ M8 (16) $75395 $563142 ###### 7.15 $-67 $24 $41 $72 $6 $20 $51 $1.3 $56 $66 $127 $$ Mukhelbeh $$ M8 (16) $75326 $562385 ###### $7.5 $-73 $73 $41 $57 $6 $74 $3 $20 $64 $7 $39 $35 $45 $71 $$ $40 $76 $73 $60 $75 $72 $6 $51 $1.3 $50 $66 $127 $$ Mukhelbeh $$ M1 (16) $75345 $562385 ###### $59 $117 $39 $71 $43 $72 $53 $10 $64 $49 $75 $39 $35 $45 $10 $$ $41 $56 $56 $127 $$ Mukhelbeh $$ M1 (16) $75326 $562382 ##### $73 $-73 $73 $43 $76 $34 $72 $25 $37 $0.96 $47 $99 $35 $33 $$ $35 $$ $44 $56 $71 $34 $$ $41 $75 $52 $35 $36 $$ $41 $75 $52 $35 $36 $46 $17 $34 $72 $25 $37 $0.84 $46 $17 $34 $$ $75 $44 $56 $16 $74 $$ $44 $$ $66 $17 $34 $$ $46 $17 $34 $$ $42 $12 $36 $36 $40 $17 $33 $50 $40 $40 $12 $34 $12 $26 $37 $12 $30 $36 $21 $21 $23 $36 $23 $36 $40 $17 $26 $36 $40 $17 $26 $36 $40 $17 $26 $36 $40 $17 $26 $36 $40 $40 $17 $26 $37 $10 $37 $28 $30 $37 $34 $20 $37 $34 $20 $37 $34 $20 $37 $34 $20 $37 $34 $20 $37 $34 $20 $36 $36 $20 $36 $40 $40 $12 $44 $24 $24 $24 $24 $24 $24 $24 $24 2	16/12	Mukheibeh 5	M5 (16)	747753	3618570	#######	7.32	162	40.9	876									0.11 3	305	4.6	-5.16	-24.54
	16/10	Mukheibeh 6	M6 (16)	753018		#######	7.06	-40	31	667									0.26 3	306	58.8	-5.43	-26.28
	16/14	Mukheibeh 7	M7 (16)	754257	3623142	#######	7.17	-17	38.5	774								5.5	(1	288	63.0	-5.58	-27.04
Mukheibells M8 (16) 755495 3624134 ###### 7.16 6.2 449 723 4.1 59 20 5.1 1.3 56 666 127 Mukheibell 10 M10 (16) 753367 322356 ###### 7.2 67 289 1157 7.6 54 29 16 5.3 120 82.6 21 3 Mukheibell 11 M11 (16) 753845 322388 ###### 7.3 -72 67 289 1157 7.6 54 29 16 5.3 120 82.6 53 395 Mukheibell 13 M13 (16) 753263 322388 ###### 7.3 -73 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	13/804	Mukheibeh 8	M8 (13)	755490	3624127	#######	7.45	-123	44.9	701					-,				0.12 2	283 (0.0462	-6.28	-30.99
Mukheibeh <	16/16	Mukheibeh 8	M8 (16)	755495	3624134	########	7.16	-62	44.9	723									5.55 2	246		-6.09	-30.01
Mukheibeh 10M10 (16) 733267 3623265 $#####$ 6.9 -117 39 710 4.34 72 25 3.7 0.96 47 599 3.57 Mukheibeh 11M11 (16) 753845 3622588 $######$ 6.92 200 31.9 821 4.8 76 39 2.8 0.87 44 56.4 53.3 245 Mukheibeh 13M13 (15) 754283 3623202 $######$ 7.38 -76 38.5 772 21.8 2.8 0.87 44 56.4 59.1 245 Mukheibeh 13M13 (16) 753203 3623291 $######$ 5.73 1.06 3.56 1.7 34 0.94 317 232 Meizar 1Met 752706 322394 $######$ 6.53 1.06 4.77 258 3.26 3.78 1.03 3.28 1.03 372 123 382 129 387 127 323 Meizar 2Me2 (16) 752706 322394 $######$ 6.57 1.06 3.76 128 21.6 3.78 127 323 328 127 Meizar 2Me2 (16) 752706 322394 $######$ 6.4 7.2 28.6 2.32 2.28 2.8 2.8 2.9 3.72 2.7 3.28 2.92 3.28 2.92 3.28 2.92 3.28 2.92 3.28 2.7 2.92 3.28 2.7 2.92 3.28	16/17	Mukheibeh 9	M9 (16)	756312	3624296	########	7.2	-67	28.9	1157									0.19 4	459		-6.54	-32.16
Mukheibeh I MII (16) 73345 5622588 ##### (52) 200 310 322302 ###### 738 76 39 28 0.94 43.6 53.1 345 Mukheibeh I3 MI3 (13) 754280 3623202 ###### 7.12 44 72 53 0.94 43.6 59.1 245 Mukheibeh I3 MI3 (16) 754263 362394 ###### 7.12 44 72 23 0.94 45.6 53.12 44 72 23 388 46 61.7 34 Meizar 1 Mei 75623 362394 ###### 6.57 100 376 178 21.8 317 327 327 327 327 328 300 378 100 372 328 326 346 61.7 34 Meizar 2 Meizar 3 Meisar 66 112 341 57 323	16/11	Mukheibeh 10	M10 (16)	753267	3622856	#######	6.96	-117	39	710								9.5	(1	261	5.0	-5.67	-27.37
Mukheibel 13 M13 (13) 754280 3623202 $\#\#\#\#$ 7.38 76 385 752 5.12 81 25 3.7 0.94 43.6 59.1 247 34 Mukheibel 13 M13 (16) 754268 3623212 $\#\#\#\#\#$ 7.12 47 38.9 778 44 72 53 0.84 46 61.7 34 Meizar 1 Me1 752562 3623944 $\#\#\#\##$ 6.57 106 3.56 178 412 246 517 236 366 177 34.8 117 32.7 238 137 238 127 348 127 348 127 348 127 348 127 348 128 117 378 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 1	16/13	Mukheibeh 11	M11 (16)	753845	3622588	#######	6.92	200	31.9	821									0.09 2	289		-5.34	-25.75
Mukheibeh 13M13 (16) 754268 3623212 $#####$ 7.12 -47 389 778 44 72 25 3.7 0.88 46 61.7 34 Meizar 1Me1 752652 362384 $######$ 7.38 -79 35.2 1630 3.64 52 17 13 2.11 230 386 127 Meizar 2Meizar 2Me2 (01) 752703 3622914 $#####$ 6.53 -102 60 3.76 178 2.11 2.12 2.30 3.64 52 17 13 2.11 230 3.66 Meizar 2Me2 (16) 752703 3622923 $#####$ 6.4 -77 606 2080 3.68 170 372 24 55 210 392 338 Meizar 3Meizar 3Me3 (01) 752703 3623292 $######$ 6.4 -17 606 2080 3.72 177 422 24.8 54 51.6 44 7 Meizar 3Meizar 3Mei3 (01) 752723 3623926 $######$ 6.4 -170 36.4 52.4 120 372 127 3203 386 Meizar 3Meizar 3Mei3 (01) 752725 3623926 $######$ 6.4 -17 546 244 55 210 372 127 327 127 327 123 Meizar 3Meizar 4E3 766 416 547 28 244	13/805	Mukheibeh 13	M13 (13)	754280		#######	7.38	-76	38.5	752									0.1 3	307	3.7	-5.69	-27.78
Meizar 1Mei 732652 362584 ##### 7.3 -79 35.2 1630 3.64 52 17 13 2.1 230 386 127 Meizar 2Meizar 2Me2 (01) 75770 3622914 ###### 6.55 -100 657 106 3.64 5.16 178 317 278 317 278 Meizar 2Me2 (01) 75770 362294 ##### 6.57 -106 3.76 178 421 246 5.8 201 373 338 Meizar 3Meizar 3Me3 (01) 75777 362292 $#####$ 6.6 -117 57.4 2090 3.68 77 24.5 210 392 338 Meizar 3Me3 (01) 752773 3622926 $#####$ 6.6 -117 57.4 2090 3.67 47 122 48.5 192 306 Meizar 3Meizar 3Me3 (16) 752723 3622926 $#####$ 6.6 -117 57.4 2090 3.72 177 42.2 24.2 5.8 19.7 Meizar 3Meizar 3Meizar 4ES 750190 3619926 $######$ 6.81 -120 47.2 24.2 5.8 210 32.5 19.3 Meizar 3Meizar 4ES 750190 3619926 $######$ 6.81 -120 42.2 24.2 24.2 25.8 210 32.5 19.3 Hamat Gader freeh)Ein Sahina <th< td=""><td>16/15</td><td>Mukheibeh 13</td><td>M13 (16)</td><td>754268</td><td>3623212</td><td>#######</td><td>7.12</td><td>-47</td><td>38.9</td><td>778</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>34</td><td>(1</td><td>264</td><td>8.0</td><td>-5.65</td><td>-27.04</td></th<>	16/15	Mukheibeh 13	M13 (16)	754268	3623212	#######	7.12	-47	38.9	778								34	(1	264	8.0	-5.65	-27.04
Meizar 2 Me2 (01) $757/0$ 3622914 $\#\#\#\#\#$ 6.5 -102 60 165 142 34.8 21.8 51.6 178 317 273 323 Meizar 2 Me2 (08) 752715 3622894 $\#\#\#\#\#$ 6.4 -77 606 3.76 178 3.17 3.78	16/07	Meizar 1	Mel	752652	3625884	########	7.38	-79	35.2	1630			17						2.39 2	217		-5.98	-29.13
Meizar 2Me2 (08) 752715 3622884 ##### 6.75 -106 57.1 2060 3.76 124 5.8 201 373 328 Meizar 3Meizar 3Me3 (01) 752706 3622923 ###### 6.4 -77 60.6 2080 3.68 170 37 24 55 210 323 338 Meizar 3Me3 (01) 752707 3622923 $#####$ 7.09 -129 41.8 664 5.24 55.2 52.8 200 3.65 48.5 61.6 4 Meizar 3Me3 (05) 752721 3622920 $#####$ 6.81 -120 41.8 664 5.24 52.8 24.2 5.8 24.2 53 203 365 Meizar 3Me3 (16) 752725 3622926 $#####$ 6.81 -120 42.2 82.4 57.2 23.9 11 57.8 200 3.75 127 32.9 210 365 306 Meizar 3Meizar 3Me3 (16) 752725 3622926 $######$ 6.81 -120 42.2 82.7 127 32.9 127 32.9 123 32.7 193 Meizar 3Meizar 4Els 749765 3619926 $######$ 6.81 -120 42.7 22.8 24.7 53.7 13.7 32.7 133 Uhant Gader freehER 749765 3619329 $######$ 6.81 -147 21.8 84.4 5	01-166	Meizar 2	Me2 (01)	752700		#######	6.63	-102	60	1650									3.90 2	244	0.059	-5.90	-29.40
Meizar 2Me (16) 752706 3622894 ##### 6.4 -77 60.6 2080 3.68 170 37 24 5.5 210 332 338 Meizar 3Me (10) 752707 3622923 ##### 6.4 -10 4.13 6.5 210 4.7 1.25 4.85 61.6 4 Meizar 3Me (10) 752721 3622926 $#####$ 6.6 -117 57.4 2090 3.72 177 422 24.2 5.8 200 365 Meizar 3Me (16) 752725 3622926 $#####$ 6.81 -120 4.22 814 5.3 20.9 4.7 1.25 3.9 7.1 5.3 787 19.3 Hamat Gader fresh)Ein SahinaES 750190 3619926 $#####$ 6.81 -120 4.2 100 3.72 177 42.2 24.7 5.8 4.8 6.5 4.8 Hamat Gader fresh)Ein RachEB 749705 3619926 $######$ 6.76 11 41.9 1600 4.8 120 3.5 3.7 19.3 Hamat Gader fresh)Ein RachER 749705 3619324 $######$ 6.76 11 41.2 120 3.6 44 55 3.9 1.1 3.7 19.3 Hamat Gader fresh)Ein RachER 749705 3619324 $######$ 6.76 11 41.2 120 3.25 13.3 120	08/753	Meizar 2	Me2 (08)	752715		#######	6.75	-106	57.1	2060									4.44 2	225	0.063	-6.87	-36.61
Meizar 3Me3 (01) 727707 3622923 $\#\#\#\#$ 7.09 -129 41.8 664 5.24 65.3 20.9 4.7 1.25 48.5 61.6 4 Meizar 3Me3 (08) 752721 3622926 $\#\#\#\#$ 6.6 -117 57.4 2090 3.72 177 42.2 5.48 70 365 30 Meizar 3Me3 (16) 752725 3622926 $\#\#\#\#$ 6.81 -120 42.2 810 5.48 71 22.2 3.9 1.1 53 78.7 19.3 (Hamat Gader fresh)Es 750190 3619206 $\#####$ 6.81 -120 42.2 810 5.48 71 22.2 3.9 1.1 53 78.7 19.3 (Hamat Gader fresh)Es 750190 3619206 $\#####$ 6.81 -120 4.2 8.8 71 22.2 3.9 1.1 53 73.7 19.3 (Hamat Gader fresh)Ein ReachER 74976 3619399 $#####$ 6.76 11 41.9 1600 4.8 12 35.7 13.0 325 13.3 (Hamat Gader fresh)Ein ReachER (00) 750349 3619399 $######$ 6.76 11 41.9 1600 4.8 12 35.7 12 35.9 13.7 (Hamat Gader fresh)Ein ReachER (00) 750349 3619399 $######$ 6.81 -147 412 16 4.8 12 <	16/02	Meizar 2	Me2 (16)	752706		#######	6.4	-77	60.6	2080									3.6 2	221		-6.89	-35.25
Meizar 3 Me3 (08) 752721 362900 ##### 6.6 -117 57.4 2090 3.72 17 4.22 5.8 200 365 305 Meizar 3 Me3 (16) 752725 3622926 ##### 6.81 -120 42.2 810 5.7 29.0 355 305 305 Hamat Gader fresh) Ein Sahina ES 750190 3619926 ##### 7.04 454 28 844 5 3.3 0.56 44 66.5 489 Hamat Gader thermohaline, incl. Ain Saraya) Ein Balsam EB 749705 3619326 ##### 6.76 11 41.5 87 28 3.5 133 325 133 Ein Reach ER (00) 750349 3619329 ###### 6.76 14 41.2 8.7 28 133 325 133 325 133 Ein Reach ER (00) 750349 3619329 ####### 6.81 -147 412	01-167	Meizar 3	Me3 (01)	752707		#######	7.09	-129	41.8	664	-					-			0.20 3	315	0.045	-6.84	-33.00
Meizar 3 Me3 (16) 752725 3622926 ##### 6.81 -120 42.2 810 5.48 71 25 3.9 1.1 53 78.7 19.3 (Hamat Gader fresh) Ein Sahina Es 750190 3619926 ##### 7.04 454 28 844 5 8.7 28 3.3 0.56 44 66.5 48.9 (Hamat Gader thermohaline, incl. Ain Saraya) Ein Balsam EB 749705 3619324 ###### 6.76 11 41.9 1600 4.8 120 34 153 133 Ein Balsam EB 749705 3619324 ###### 6.76 11 41.9 1600 4.8 120 34 153 133 Ein Reach ER (00) 750349 3619329 ###### 6.81 -147 41.5 175 6.8 142 305 115 87 130 115 Ein Reach ER (00) 750014 361939 <td< td=""><td>08/752</td><td>Meizar 3</td><td>Me3 (08)</td><td>752721</td><td>3622900</td><td>#######</td><td>6.6</td><td>-117</td><td>57.4</td><td>2090</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.97 2</td><td>223</td><td>0.078</td><td>-6.87</td><td>-36.61</td></td<>	08/752	Meizar 3	Me3 (08)	752721	3622900	#######	6.6	-117	57.4	2090									3.97 2	223	0.078	-6.87	-36.61
(Hamat Gader fresh)Ein SahinaES7501903619926#####7.0445428844587283.30.564466.548.9Hamat Gader thermohaline, incl. AinSaraya)Ein BalsamEB7497053619324######6.761141.916004.8123.5130325133Ein BalsamEB7497053619399#####6.85-96381728614239.512.22.94143309115Ein ReachER (00)7503493619399#####6.81-14741.517795.8613430.5144156345119Ein ReachER (01)7503493619318######6.81-14741.517795.8613430.512.63.44156345119Ein ReachER (00)7503493619918######6.69-7643.418604.8413037144.2160376128Ein MaklaEM (04)7499133619091######6.64-13147.321905.641725.19209465151128Ein MaklaEM (04)7498113619314######6.53-11649.521603.641725.19209465151128Ein MaklaEM (16)7498593619414######6.53-	16/01	Meizar 3	Me3 (16)	752725	3622926	#######	6.81	-120	42.2	810						-	-		0.35 3	330		-5.85	-28.29
Ein Sahina Es 750190 3619926 ##### 7.04 454 28 844 5 87 28 3.3 0.56 44 66.5 48.9 (Hamat Gader thermohaline, incl. Ain Saraya) Ein Balsam EB 749705 3619324 ##### 6.76 11 41.9 1600 4.8 12 3.5 130 325 133 Ein Balsam EB 749705 3619329 ##### 6.85 -96 38 1728 6 142 3.5 130 315 115 Ein Reach ER (00) 750349 3619319 ##### 6.81 -147 41.5 1779 5.86 134 305 126 344 156 345 119 Ein Reach ER (04) 749985 3618916 ###### 6.81 -147 41.5 1779 5.86 134 156 345 119 128 128 128 129 128 128 128 128 128 128 128 128 128 128 128 128 1	Springs	(Hamat Gader fi	resh)																				
(Hamat Gader thermohaline, incl. Ain Saraya) Ein Balsam EB 749705 3619324 ##### 6.76 11 41.9 1600 4.8 12 3.5 130 325 133 Ein Balsam EB 749705 3619324 ##### 6.85 -96 38 1728 6 142 39.5 12.0 3.44 156 345 119 Ein Reach ER (00) 750349 3619398 ##### 6.81 -147 41.5 1759 5.86 134 356 119 915 115 Ein Reach ER (00) 750014 36199198 ###### 6.64 -131 47.3 2190 5.64 178 44.2 160 376 128 128 376 128 128 128 126 344 156 136 118 Ein Makla EM (00) 749909 3619091 ###### 6.64 -131 47.3 2190 56.4 148 128 376 128 128 128 128 128 128 128 128	16/03	Ein Sahina	ES	750190	3619926	#######	7.04	454	28	844		87					5	8.9 0	2	301	19.3	-5.57	-26.13
Ein BalsamEB 749705 3619324 $\#####$ 6.76 11 41.9 1600 4.8 120 34 12 3.5 130 325 133 Ein ReachER (00) 750349 3619399 $#####$ 6.85 -96 38 1728 6 142 39.5 12.2 2.94 143 309 115 Ein ReachER (04) 749985 3619399 $#####$ 6.81 -147 41.5 1759 5.86 134 35.5 123 339 115 Ein ReachER (04) 749999 3619991 $#####$ 6.69 -76 43.4 1860 4.84 130 37 14 4.2 160 376 128 Ein MaklaEM (00) 749909 3619091 $######$ 6.64 -131 47.3 2190 5.64 178 44.2 180 376 128 129	Springs	(Hamat Gader ti	hermohalin	e, incl. Ai	n Saraya)																		
Ein ReachER (00) 750349 3619399 $\#\#\#\#\#$ 6.85 -96 38 1728 6 142 39.5 12.2 2.94 143 309 115 Ein ReachER (04) 749985 3618916 $\#\#\#\#\#$ 6.81 -147 41.5 1759 5.86 134 39.5 12.6 3.44 156 345 119 Ein ReachER (16) 750014 3619091 $\#\#\#\#\#$ 6.89 -76 43.4 1860 4.84 130 37 14 4.2 160 376 128 Ein MaklaEM (00) 749909 3619091 $\#\#\#\#\#$ 6.64 -131 47.3 2190 5.64 178 44.2 18 5.21 210 488 158 Ein MaklaEM (04) 749811 3618793 $\#\#\#\#\#$ 6.73 -167 49.6 2160 5.42 152 422 18 122 488 158 Ein MaklaEM (16) 749811 3618793 $\#\#\#\#\#$ 6.73 -167 49.5 2160 5.42 152 422 18 752 219 209 465 151 Ein MaklaEM (16) 749859 3619414 $\#\#\#\#\#$ 6.83 -165 3.64 150 39.7 17 5.5 210 475 150 Ain SaravaAS 750429 3619424 $\#\#\#\#$ 6.83 -165 3.83 1655 4.54 130 38 12 <th< td=""><td>16/04</td><td>Ein Balsam</td><td>EB</td><td>749705</td><td></td><td>#######</td><td>6.76</td><td>11</td><td>41.9</td><td>1600</td><td></td><td></td><td>34</td><td></td><td></td><td></td><td></td><td></td><td>2.92 2</td><td>289</td><td>4.6</td><td>-5.84</td><td>-28.53</td></th<>	16/04	Ein Balsam	EB	749705		#######	6.76	11	41.9	1600			34						2.92 2	289	4.6	-5.84	-28.53
Ein ReachER (04) 7499853618816#####6.81-14741.517595.8613439.512.63.44156345119Ein ReachER (16) 7500143619198######6.69-7643.418604.8413037144.2160376128Ein MaklaEM (00) 7499093619091#####6.64-13147.321905.6417844.2185.21212488158Ein MaklaEM (04) 7498113618793######6.73-16749.621605.421524217.25.19209465151Ein MaklaEM (16) 7498593619414######6.53-16649.521605.421524217.25.19209465151Bin MaklaEM (16) 7498593619414######6.53-11649.521603.6415039175.5210475150Ain SaravaAS7504293619424######6.83-1638.316554.54130381234.212034.2120Ain SaravaAS7504293619424#######6.83-1638.316554.54130381234.2120Ain SaravaAS7504293619424#######6.83-1638.316554.54130 <td>00-107</td> <td>Ein Reach</td> <td>ER (00)</td> <td>750349</td> <td></td> <td>#######</td> <td>6.85</td> <td>-96</td> <td>38</td> <td>1728</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.82 3</td> <td>362</td> <td>9.1</td> <td>-5.84</td> <td>-29.90</td>	00-107	Ein Reach	ER (00)	750349		#######	6.85	-96	38	1728									3.82 3	362	9.1	-5.84	-29.90
Ein ReachER (16) 750014 3619198 $\#\#\#\#\#$ 6.69 -76 43.4 1860 4.84 130 37 14 4.2 160 376 128 3Ein MaklaEM (00) 749909 3619091 $\#\#\#\#\#$ 6.64 -131 47.3 2190 5.64 178 44.2 18 5.21 212 488 158 5Ein MaklaEM (04) 749909 3619091 $\#\#\#\#\#$ 6.73 -167 49.6 2160 5.42 152 42 152 289 455 151 5Ein MaklaEM (16) 749859 3619141 $\#\#\#\#\#\#$ 6.59 -116 49.5 2160 3.64 150 39 17 5.5 210 475 150 Ain SaravaAS 750429 3619424 $\#\#\#\#\#\#$ 6.83 -16 38.3 1655 4.54 130 38 12 342 120	04-585	Ein Reach	ER (04)	749985		#######	6.81	-147	41.5	1759									4.25 3	353	7.9	-5.99	-29.90
3 Ein Makla EM (00) 749909 3619091 ###### 6.64 -131 47.3 2190 5.64 178 44.2 18 5.21 212 488 158 5 Ein Makla EM (04) 749811 3618793 ###### 6.73 -167 49.6 2160 5.42 152 42 17.2 5.19 209 465 151 6 Ein Makla EM (16) 749859 3619141 ###### 6.59 -116 49.5 2160 3.64 150 39 17 5.5 210 475 150 7 Ain Sarava AS 750429 3619424 ###### 6.83 -16 38.3 1655 4.54 130 38 12 3.8 160 342 120	16/05	Ein Reach	ER (16)	750014	3619198	#######	69.9	-76	43.4	1860			37						3.37 2	291	7.6	-5.93	-28.59
5 Ein Makla EM (04) 749811 3618793 ###### 6.73 -167 49.6 2160 5.42 152 42 17.2 5.19 209 465 151 Ein Makla EM (16) 749859 3619141 ###### 6.59 -116 49.5 2160 3.64 150 39 17 5.5 210 475 150 Ain Sarava AS 750429 3619424 ####### 6.83 -16 38.3 1655 4.54 130 38 12 3.8 160 342 120	00-108	Ein Makla	EM (00)	749909	3619091	#######	6.64	-131	47.3	2190			14.2						6.55 3	340	5.8	-6.00	-31.60
Ein Makla EM (16) 749859 3619141 ###### 6.59 -116 49.5 2160 3.64 150 39 17 5.5 210 475 150 Ain Sarava AS 750429 3619424 ###### 6.83 -16 38.3 1655 4.54 130 38 12 3.8 160 342 120	04-586	Ein Makla	EM (04)	749811	3618793	#######	6.73	-167	49.6										5.98 3	327	5.7	-6.15	-31.30
Ain Sarava AS 750429 3619424 ###### 6.83 -16 38.3 1655 4.54 130 38 12 3.8 160 342 120	16/06	Ein Makla	EM (16)	749859		#######	6.59	-116	49.5				39						4.51 2	218	5.9	-6.08	-29.59
	16/20	Ain Saraya	AS	750429	3619424	#######	6.83	-16	38.3	1655	4.54	130	38	12 3					3.02 2	273	8.0	-5.85	-28.56

TABLE 1: Compilation of groundwater analyses from the Lower Yarmouk Gorge and surrounding areas.

6

	δ ² H OW		-32.00	-31.13	-23.86	-31.13	-28.98		-27.3	-21.6	-30.0		-38.34	-37.59			-21.34
	8		-6.08	-6.16	-5.29	-6.16	-6.13		-6.11	-4.94	-6.97		-7.36	-7.29			-4.32
	U nmol/l		4.1	2.3	9.3	8.4	6.7		0.06	0.02	0.05		1.01	1.00			5.9
	HCO ₃ mg/l		337	330	335	291	244		128	408	168		211	206			184
	Br mg/l		2.25	2.9	0.97	1.06	1.32										0.2
	SO ₄ mg/l		148	212	124	125	129		11.8	24.9	5.7		8.99	57.3	33.1		147
	Cl mg/l		208	244	143	150	161		25.7	108	17.3		9.77	12.9	11.3		110
	Na mg/l		124	122	82.3	84.4	94		23.8	64.5	25.5		4.34	9.87	7.11		97
	Sr mg/l		2.88	3.7		1.9	2		0.25	0.83	0.21		0.09	0.30			0.57
	K mg/l		13.9	13.8	8.7	8.89	9.5		5.69	4.47	4.31		0.65	1.46	1.06		5.7
	Mg mg/l		34.9	34	34.5	32	30		13.7	43	15.4		5.44	12.4	8.92		30
_:	Ca mg/l		108	113	105	118	110		22.4	85	26.1		62.9	72.3	69.1		55
tinued	<u> </u>		5.59		5.56	4.84	4.06						3.44	3.52			3.18
1: Con	EC AI μS/cm		1418	1433	1071	1130	499		349	1010	363		472	358			961
TABLE 1: Continued.	Temp °C		41.5	40	27.5	37.7	40		17.8	18	18.6		15.9	18.4			23.5
	mV Eh		-145	-28	492	72	85		468	433	460		445	497			191
	Hq		7.06	7.02	7.11	7.1	7.03		6.68	7.61	7.69		7.39	7.49			8.4
	Sampling Date		#######	#######	#######	#######	#######		#######	#######	#######		#######	#######			########
	Y		AH (01) 751665 3621722 ####						763884 3648639 ####	757703 3649486 ####			751017 3682076 ####				
	X		751665	AH (07) 751665 3621722	AH (11) 751568 3621767	AH (13) 751600 3621710	AH (16) 751661 3621700	, fresh)	763884	757703	748804 3653081	sh)	751017	746939 3682079			756255 3624301
	Abbr.	aline)	AH (01)	AH (07)	AH (11)	AH (13)	AH (16)	over basalt,	Dananir		ing	estone, free					YR
	Source	Springs (Himma thermohaline)	Ein Himma	Ein Himma	Ein Himma	Ein Himma	Ein Himma	Springs (Golan Heights, cover basalt, fresh)	Umm Abu ad Dananir	Ayit fall	Amphy spring	Springs (Mt. Hermon, limestone, fresh)	Ein Dan	Ein Banyas	Average		Yarmouk River
	Ð	Springs (01-12	07/624	11/140	13/807	16/19	Springs (18/920	18/921	18/922	Springs (08/786	08/787		River	16/18

Geofluids

			ŀ	Ċ	Ē				Ţ	F	ć		, II	F	E F		
ID	Location	Short	pmol/l	pmol/l	pmol/l	pmol/l	nne mr homq	l/l pmol/l	đ	u n pmol/l	ربر pmol/l	ı pmol/l	on homd	pmol/l	ud mit	V	ртоl/l
01-128	Mukheibeh 1 2001	M1 (01)	2.35	4.31	0.58	2.33	0.48	8 0.17	0.54	0.0	0.70	17.71	0.17	0.72	1.01		0.20
13/803	Mukheibeh 2 2013	M2 (13)	1.40	2.11	0.28	1.14	0.22	2 0.08	0.35	0.06	0.54	14.84	0.14	0.58	0.86		0.17
16-08	Mukheibeh 2 2016	M2 (16)	2.21	3.75	0.43	1.98	0.74	4 0.08	0.42	0.06	0.65	18.59	0.17	0.67	0.3	0.89 (0.17
13/802	Mukheibeh 4 2013	M4 (13)	1.51	2.47	0.31	1.42	0.26	Ŭ	0.29	0.06	0.44	11.57	0.11	0.48	0.72		0.13
16-09	Mukheibeh 4 2016	M4 (16)	22.21	41.72	5.15	21.76	4.34	4 1.02	3.99	0.54	3.43	52.06	0.70	2.10	1.5	1.89 (0.31
16-12	Mukheibeh 5 2016	M5 (16)	1.18	1.84	0.18	0.81	0.23	3	0.09		0.11	2.90			0.16	9	
16-10	Mukheibeh 6 2016	M6 (16)	1.54	2.57	0.23	1.03	0.28	8	0.21	0.05	0.42	14.17	0.12	0.49	0.77		0.15
16-14	Mukheibeh 7 2016	M7 (16)	4.62	9.02	06.0	3.47	0.63	3 0.17	0.69	0.10	0.79	17.05	0.18	0.66	0.79		0.13
13/804	Mukheibeh 8 2013	M8 (13)	5.14	8.87	1.10	4.53	0.89	9 0.23	0.91	0.15	06.0	12.69	0.19	0.56	0.46		0.08
16-16	Mukheibeh 8 2016	M8 (16)	4.66	6.57	0.79	3.02	0.49	9 0.12	0.53	0.06	0.54	9.73	0.11	0.36	0.34		0.05
16-17	Mukheibeh 9 2016	M9 (16)	14.58	29.29	2.84	8.76	0.51	1 0.11	0.92	0.07	0.47	8.02	0.09	0.32	0.49		0.12
16-11	Mukheibeh 10 2016	M10 (16)	3.63	7.27	0.79	3.40	0.81	1 0.18	0.71	0.09	0.62	8.73	0.12	0.38	0.42		0.08
16-13	Mukheibeh 11 2016	M11 (16)	4.22	7.74	0.84	3.60	0.82	2 0.21	0.89	0.14	1.22	27.90	0.29	0.96	0.99		0.16
13/805	Mukheibeh 13 2013	M13 (13)	7.48	11.31	1.19	4.65	0.77	7 0.23	0.86	0.10	0.75	11.11	0.16	0.50	0.54		0.09
16-15	Mukheibeh 13 2016	M13 (16)	2.97	6.20	0.62	2.67	0.62	2 0.16	0.59	0.09	0.69	12.51	0.16	0.49	0.50		0.08
16-07	Meizar 1	Mel	1.40	2.21	0.18	0.96	0.42		0.53		0.18	3.23			0.14	4	
01-166	Meizar 2 2001	Me2 (01)	4.38	10.32	1.33	4.80	1.03	-	1.05	0.14	0.88	15.75	0.17	0.49	0.40	-	0.06
08/753	Meizar 2 2008	Me2 (08)	7.17	18.48	3.23	15.86	5.48		6.32	0.84	4.18	34.51	0.75	1.91	T	-	0.15
16-02	Meizar 2 2016	Me2 (16)	6.14	10.28	1.14	4.51	0.85	-	1.09	0.16	1.15	24.60	0.25	0.72	0.51	-	0.07
01-167	Meizar 3 2001	Me3 (01)	9.98	18.14	2.48	10.12	2.24	4 0.56	2.25	0.31	1.81	23.87	0.35	1.02	0.	-	0.14
08/752	Meizar 3 2008	Me3 (08)	30.39	86.80	17.80	96.20	31.56		36.36	4.79	23.55	140.96	3.97	8.98	5.48	-	0.77
16-01	Meizar 3 2016	Me3 (16)	1.33	2.39	0.25	1.03	0.20	0	0.20	0.04	0.22	4.63	0.05	0.17	0.0	-	0.05
16-03	Ein Sahina	ES	1.84	3.24	0.32	1.43	0.28	8	0.33		0.35	9.18	0.09	0.30	0.30	-	0.04
16-04	Ein Balsam 2016	EB	4.68	9.13	0.98	4.20	0.75	-	0.80	0.10	0.76	17.16	0.16	0.53	0.0	-	0.10
00-108	Ein Makla 2000	ER (00)	12.49	25.59	1.87	11.20	1.81	1 0.49		0.33	2.26	50.15	0.55	1.91	2.0	-	0.35
04-586	Ein Makla 2004	ER (04)	10.31	14.67	1.81	7.43	1.28	-		0.31	1.99	47.02	0.48	1.84	ï	-	0.33
16-06	Ein Makla 2016	ER (16)	8.81	11.05	1.44	6.23	1.26	6 0.38	1.70	0.27	2.23	50.26	0.52	1.84	2.03		0.36
00-107	Ein Reach 2000	EM (00)		19.71	1.46	9.53	1.35	-	1.50	0.24	1.50	27.60	0.31	1.17	1.25		0.22
04-585	Ein Reach 2004	EM (04)	4.75	7.70	0.98	3.61	0.62	-	0.84	0.15	1.04	19.69	0.22	0.73	0.92		0.17
16-05	Ein Reach 2016	EM (16)	14.61	25.69	2.88	12.01	2.16	-	2.41	0.33	2.40	43.53	0.53	1.75	1.72	-	0.30
16-20	Ain Saraya	AS	12.27	18.80	2.33	7.34	0.49	-	0.84	0.08	0.64	15.98	0.16	0.62	0.85	-	0.17
01-12	Ain Himma 2001	AH (01)	4.31	23.39	3.48	13.06	2.98	-	3.38	0.52	3.33	51.76	0.73	2.21	2.02		0.34
07/624	Ain Himma 2007	AH (07)	16.34	65.43	3.42	14.15	3.38	8 0.92	4.19	0.68	4.29	62.85	0.93	2.79	2.57	Ĩ	0.42
13/807	Ain Himma 2013	AH (13)	4.06	7.58	0.74	2.91	0.53		0.53	0.09	0.61	13.83	0.16	0.52	0.66	-	0.11
16-19	Ain Himma 2016	AH (16)	43.50	61.06	8.54	25.95	0.76	6 0.19	2.11	0.12	0.92	19.85	0.21	0.80	1.	1.05 (0.23

TABLE 2: REY composition of the discussed groundwater from the Lower Yarmouk Gorge.

8

Continued.	
ä	
TABLE	

Lu	pmol/l	0.96	1.22	1.07
	pmol/l	6.35	7.57	5.54
Tm				
Er	pmol/l	8.08	8.78	4.93
Но	pmol/l	2.71	2.91	1.43
	pmol/l	249.79	240.58	153.95
Dy	pmol/l	11.14	12.55	5.92
Τb	pmol/l	1.52	1.82	0.83
Gd	pmol/l	10.58	12.74	6.64
	pmol/l	2.26	2.86	1.53
Sm	pmol/l	8.29	10.48	5.88
Pm				
рN	pmol/l	45.24	54.53	34.96
\mathbf{Pr}	pmol/l	9.80	12.00	8.18
Ce	pmol/l	5.39	23.07	82.25
La	pmol/l	45.10	50.63	38.37
Chort	110110	EBY	ED	YR
Location	TUCALIUI	Ein Banyas	Ein Dan	Yarmouk
	A	08/787	08/786	16-18

TABLE 3: Sr²⁺ concentration and ⁸⁷Sr/⁸⁶Sr isotope signatures of groundwater and rocks from the Lower Yarmouk Gorge and surrounding areas.

ID	Well/spring	Sr (mg/l)	⁸⁷ Sr/ ⁸⁶ Sr
16/08	Mukheibeh 2	0.51	0.70769
16/09	Mukheibeh 4	0.5	0.70764
16/12	Mukheibeh 5	0.94	0.70770
16/10	Mukheibeh 6	0.66	0.70767
16/14	Mukheibeh 7	0.54	0.70757
16/16	Mukheibeh 8	1.3	0.70748
16/17	Mukheibeh 9	5.3	0.70778
16/11	Mukheibeh 10	0.96	0.70757
16/13	Mukheibeh 11	0.87	0.70767
16/15	Mukheibeh 13	0.88	0.70757
16/07	Meizar 1	2.1	0.70754
16/02	Meizar 2	5.5	0.70760
16/01	Meizar 3	1.1	0.70755
16/03	Ein Sahina	0.56	0.70763
16/04	Ein Balsam	3.5	0.70765
16/06	Ein Makla	5.5	0.70767
16/05	Ein Reach	4.2	0.70776
16/20	Ain Saraya	3.8	0.70771
16/19	Ain Himma	2	0.70759
18/920	Umm Abu ad Dananir	0.252	0.70458
18/922	Amphy spring	0.21	0.70457
16/18	Yarmouk	0.57	0.70708
ID	Rock sample	Sr (mg/kg)	⁸⁷ Sr/ ⁸⁶ Sr
18/A	Golan Heights 1	1934	0.70330
18/B	Golan Heights 2	1040	0.70350

varied over the years. Hamat Gader brines are lower in SO_4^{2-} but higher in Cl⁻ and Br⁻ than Meizar brines. Waters from wells such as Meizar 1 and Mukheibeh 8, 9, and 11 sometimes deviate from the indicated trend lines. The Yarmouk River water is mostly comparable to Mukheibeh water, but not in diagramms with Na⁺, Cl⁻ and SO_4^{2-} .

4.2. Uranium. U(VI) is correlated neither with any other element mentioned before nor with Eh varying between -200 and +200 mV (Table 1). The Mukheibeh field splits into three subgroups (Figure 5). U(VI) with 80-105 nmol/l has the highest values in Mukheibeh groundwater. Groundwater from wells Mukheibeh 5 and 11, Ain Himma, Hamat Gader shows values between 3 and 10 nmol/l. The groundwater with <0.1 nmol/l and that with U(VI) below the detection limit comprise all well waters from Meizar 2 and 3 and Mukheibeh 1, 8, and 9. The lowest U(VI) values are either in the lowest or in the highest sulfate groundwater (Figure 5(b)).

4.3. Rare Earths and Yttrium. Weathering of omnipresent alkali olivine basalts in the Yarmouk basin releases Fe(II) which precipitates as colloidal ferric oxyhydroxides (HFO)

under oxidizing conditions. These colloids later aggregate to gels on all solid surfaces along the pathways within and below the basaltic layer. In aqueous systems, however, HREE and Y are slightly fractionated. The REY patterns of samples in this study are subdivided into 6 types. The first group (t1) typifies groundwater derived from weathered alkali olivine basalts. The patterns t2 and t3 show the results of increasing mixing with limestone water (t4) (Figures 6(a)-6(d)). In Figure 6(e), three REY patterns of type $t2^*$ are compiled which show very high LREE contents but low HREE and Y. Otherwise, they resemble type t2. Another different feature of $t2^*$ is that positive Gd anomalies exceed those of Y.

All of the above patterns show positive Y anomalies. The dissolution of REY-enriched HFO yields convex patterns of type t5 with enhanced abundances of medium REE compared to light and heavy REE and negative Y anomalies (Figure 6(f)). These Y anomalies develop because Y prefers to stay in the aqueous phase during the stage of REY adsorption by HFO [36].

The water from Ain Himma in 2001 and 2007 and well Mukheibeh 4(16) shows REY patterns, typical of water from limestone aquifers such as those of Ein Dan and Ein Banyas in the Mt. Hermon Massif but without the negative Ce anomalies typical of spring waters from karstic limestones (Figure 6(g)) or from Cretaceous limestones along the rift valley [37]. Note that the REY abundance in waters from Mukheibeh 4(16) and Ain Himma from years 2000 and 2007 is lower than that in the spring waters of Dan and Banyas, which may be a result of interaction with HFO.

4.4. 87 Sr/ 86 Sr. Although the waters show a wide spread in Sr²⁺, their 87 Sr/ 86 Sr isotope ratios vary only between 0.7070 and 0.7077 (Figure 7). This corresponds with the range of 87 Sr/ 86 Sr in Cretaceous limestones of Israel, which is about 0.7070-07086 (Wilske et al., unpublished data). Only the Yarmouk River with 0.70710 points to mixing with basaltic rock drainage water which shows an 87 Sr/ 86 Sr value of 0.70455, slightly above Phanerozoic upper mantel alkali olivine basalts from Israel with 87 Sr/ 86 Sr of 0.7033-07035 (Table 3).

In the plot of Sr^{2+} vs. ${}^{87}Sr/{}^{86}Sr$, Mukheibeh field groundwater clusters at low Sr^{2+} , whereas the samples from Hamat Gader, Meizar 2, and Himma show a wide spread. Mukheibeh 8 water fits into the Hamat Gader-Meizar 2-Himma trend, whereas Meizar 3 approaches the Mukheibeh field.

4.5. $\delta^{18}O$ vs. δD . The stable water isotopes in the LYG range from low values of Meizar 2 in the southern Golan Heights and springs and wells on the eastern plunge of the Mt. Hermon Massif towards the Hauran plateau to high values in water of the Yarmouk River (Figure 8). All data from the LYG are plotted between the Syrian and Mt. Hermon meteoric water lines (MWL). The Mukheibeh waters like the groundwater from the Hauran plateau nearly cover the whole array, whereas the samples of Meizar, Hamat Gader, and Himma cluster. Ein Sahina, located uphill of the Hamat Gader group, is plotted among the Mukheibeh field. Ain Sarayah, located close to Ein Reach of the Hamat Gader

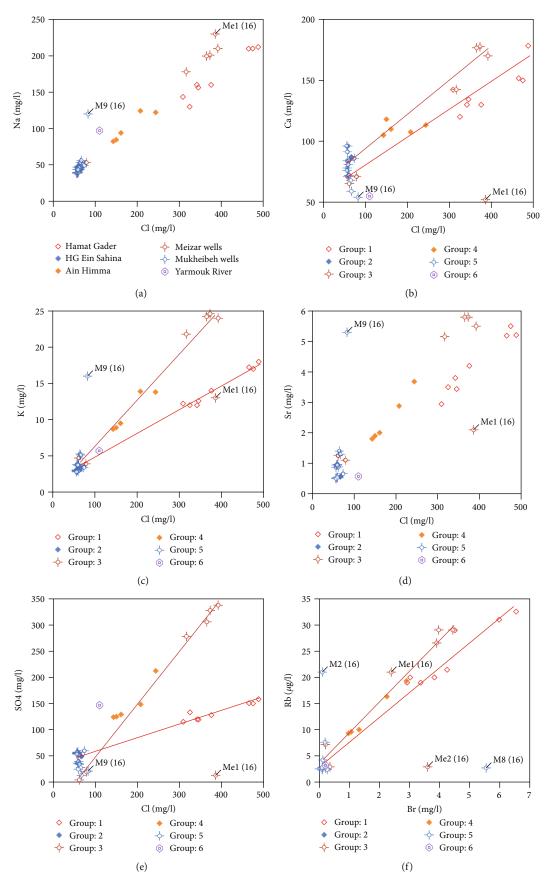


FIGURE 4: Continued.

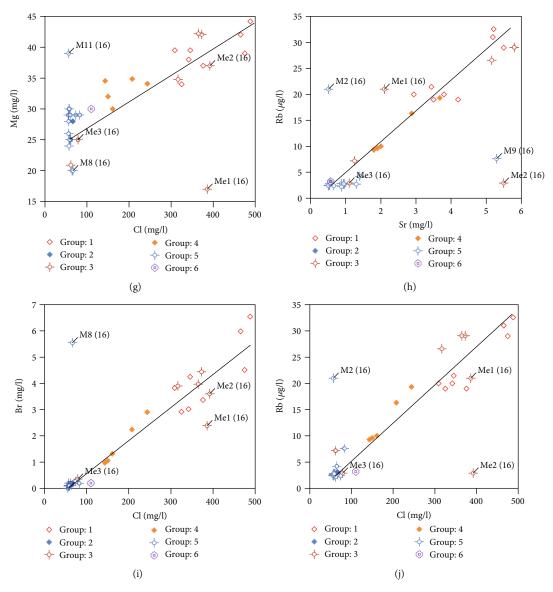


FIGURE 4: Crossplots of elements in the groundwater in the Lower Yarmouk Gorge. For details, refer to text.

cluster, is plotted among the heaviest Mukheibeh waters. Meizar 2 and Meizar 3(08) show the lowest isotope values.

5. Discussion

5.1. Sources of Groundwater. The stable isotopes of water and the element correlations reveal different origins of fresh and saline contributions to the groundwater in the LYG. Distinct groups of stable isotopes suggest regional infiltration areas at different elevations. The Meizar 2 groundwater from 2001 to 2016 with (i) light δ^2 H and δ^{18} O signatures and (ii) REY patterns of nearly limestone water shape and least affected by HFO (t4 in Figure 6(d)) suggests infiltration of precipitation on the outcropping Triassic to Cretaceous limestones of the foothills of the Mt. Hermon Massif. The increase in Cl⁻ is higher than that in Na⁺ probably pointing to mobilization of highly evaporated seawater brines and admix of these brines to the limestone water. The water of Meizar 2(08) and Meizar 3(08) shows similar chemical and isotopic composition and the same type of REY patterns (t5). Although showing similar U(VI) concentrations, Meizar 2(01) and Meizar 2(16) are dissimilar in REY patterns (t4 and t5). This suggests that these types of groundwater discharge from the same reservoir but the flow path of recharging water differs over the years.

The groundwater with δ^{18} O and δ D of about -6‰ and -30‰, respectively, typifies the groundwater from Hamat Gader, Himma, Meizar 3 in 2001 and 2016, and the Mukheibeh field. Most of the Mukheibeh and Hauran groundwater shows a trend of increasingly heavy stable isotopes of water, suggesting evaporation of recharge prior to infiltration (Figure 8). The effect of evaporation on stable isotope enrichment is shown by heaviest δ D and δ^{18} O signatures in the Yarmouk River.

High molar values of Na^+/Cl^- and Ca^{2+}/SO_4^{2-} but low Br^-/Cl^- and low concentrations of Na^+ , Cl^- , Ca^{2+} , Mg^{2+} , K^+ , Sr^{2+} , and Br^- typify the basaltic waters [31]. Pure basaltic

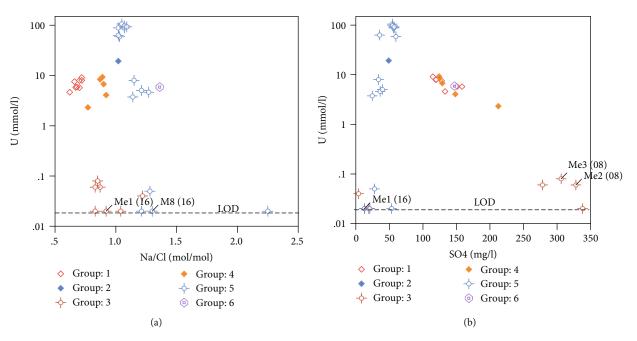
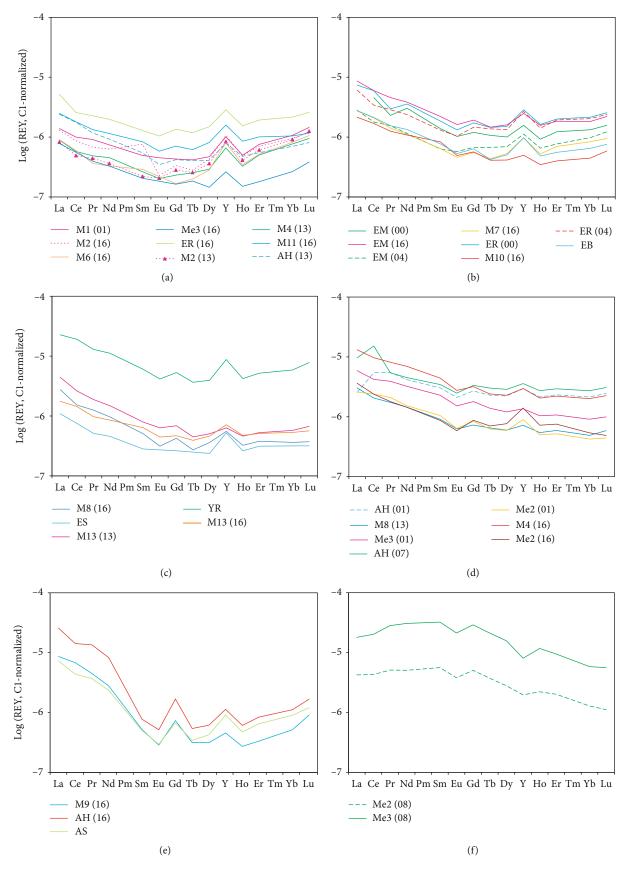
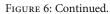


FIGURE 5: Crossplots of U(VI) and Na/Cl values in the groundwater of the Lower Yarmouk Gorge.

water is characterized by $Na^+/Cl^- \gg 1$ (Table 1) and typical REY patterns of type t1 (Figure 6(a)). With increasing leaching of halite from sedimentary rocks, the basaltic waters approach the lowest Na⁺/Cl⁻ value of about 1, whereas mixing with evaporated seawater brines yields $Na^+/Cl^- < 1$ (Figure 9). Comparison of the Mukheibeh waters with those of basaltic composition reveals that the former waters are enriched in all elements (Table 1). The dissolution of anhydrite/gypsum by thermal waters of Meizar and Himma leads to enhanced concentrations of Ca^{2+} and SO_4^{-2-} (Figure 4(b)). Ca²⁺ may also increase by dissolution of calcite at enhanced temperatures and albitization of plagioclases in basalts. Mg²⁺, Rb⁺, Br⁻, and K⁺ may be gained by ion exchange against Ca^{2+} in marly layers in the aquifers (Figures 3 and 4). A Br increase may be gained by contact with the bituminous-rich B2 formation. The correlations of Cl⁻ with SO₄²⁻, Ca²⁺, Mg²⁺, Sr²⁺, Rb⁺, and Br⁻ reveal that, with few exceptions, waters from Hamat Gader, Himma, and Meizar are mixtures of basaltic water and remnants of brines from the Triassic-Cretaceous Arabian carbonate platform. The strong correlation of Rb⁺ and Sr²⁺ indicates a common source but not necessarily the same mineral (Figure 4(h)). The two trends in the correlation of Rb⁺ and Br⁻ verify the different sources of both elements (Figure 4(j)).


The molar 1000Br⁻/Cl⁻ vs. Na⁺/Cl⁻ values show several trends for groundwater in the Yarmouk basin and the trend of evaporated seawater in salt pans (Figure 9). In this plot, the springs of Hamat Gader, Himma, and well Meizar 2 define vertical trends which are only explainable by leaching of Br⁻ from the organic-rich B2 formation (Figure 3). Meizar 3 in 2001 and 2016 and all the groundwater with the lowest Br⁻/Cl⁻ values in the vertical groups suggest mixing between Mukheibeh groundwater and seawater brine characterized by Na⁺/Cl⁻ and 1000Br⁻/Cl⁻ of about 0.5 and 5.3, respectively. Such ratios resemble those of the Ha'On type of brine, emerg-


ing at SE shoreline of the Lake Tiberias [2, 38, 39]. A second mixing line is indicated by Ein Sahina and Mukheibeh wells 1 and 6; both lines only differ in the Mukheibeh end member.

5.2. The Impact of HFO Precipitation on U and REY. U(VI) is highly adsorbed onto the high surface area of HFO [40]. The U content of alkali olivine basalts is in the range of 1 ppb [41]. The infiltrating basaltic groundwater with low U(VI) content passes the growing HFO "filter" within and below the basaltic cover of the Hauran plateau and elsewhere. During the alteration of HFO to goethite, lepidocrocite, or hematite, the adsorbed U(VI) is reduced to U(V) which is more resilient to oxidation than uraninite (UO₂) or adsorbed U(IV) [42, 43]. Adsorption of U(VI) in the pH range of 6.6-7.3 (Table 1) is not affected by additional adsorption of phosphate [44].

The high U(VI) contents of 80 to 105 nmol/l in the groundwater of Mukheibeh artesian wells 1, 2, 4, 6, and 7 are most probably supplied later from the phosphorite-rich B2 aquifer. The phosphorites from the B2 formation in Syria, Jordan, and Israel contain about 100 ppm U [45]. Assuming that U(VI) is mobilized by phosphate as $UO_2(HPO_4)_2^{2+}$ [46], the phosphate concentration should be in the range of 0.2 μ mol/l or 6 μ g/l which was much below our routine detection limit of phosphate of 1 mg/l.

Meizar 2 water has its source in the flanks of the Mt. Hermon Massif and in the western elevations of the Hauran plateau, which agrees with light stable isotopes of water. Although limestone waters contain 2-20 nmol/l U(IV) from elsewhere in Israel (Siebert unpublished), Meizar 2 and Mukheibeh 8, 9, and 11 waters show less than 0.1 nmol/l U(VI) suggesting that these waters must have had contact with HFO but did not interact with the B2 formation. Though having similar low U, considerably heavier stable isotope signatures in Mukheibeh 8 and 9, the most

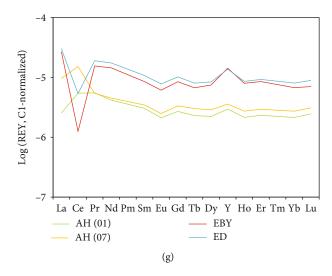


FIGURE 6: REY distribution patterns of groundwater in the Lower Yarmouk Gorge. The visual grouping of patterns shows their high variability.

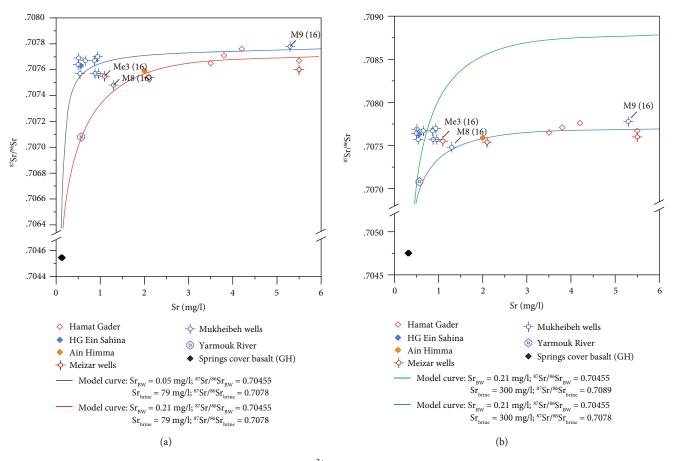


FIGURE 7: Crossplots of Sr isotope ratios and Sr²⁺ in the groundwater from the Lower Yarmouk Gorge.

northeastern samples in the LYG, refer to a recharge area differing from Meizar 2.

HFO scavenges not only U(IV) but also REY and HPO_4^{2-} . There may be some synergetic interaction between

phosphate and REY resulting in type t1 patterns. This seems to be indicated in type t2^{*}, which is possibly due to Y-phosphate precipitation (possibly churchite, Y, and HREEPO₄) due to which the light REE are released [47].

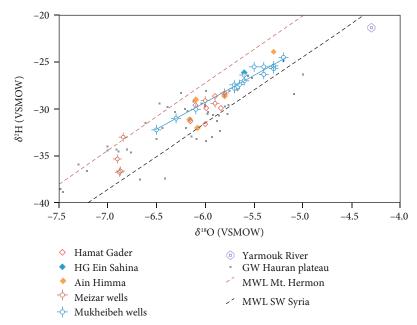


FIGURE 8: δD vs. $\delta^{18}O$ in groundwater of the Lower Yarmouk Gorge ([1]; this study) and the Hauran plateau [18]. MWL for Mt. Hermon and SW Syria are taken from Brielmann [52] and Al Charideh and Zakhem [53], respectively.

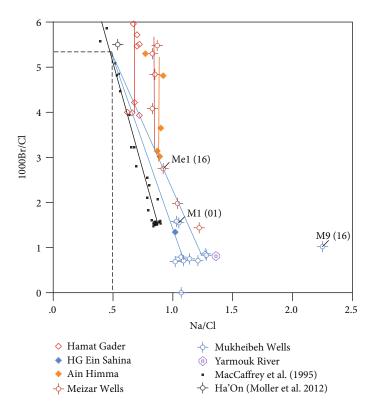


FIGURE 9: Crossplots of 1000Br/Cl and Na/Cl of the groundwater from the Lower Yarmouk Gorge.

All groundwater in the gorge is produced from limestone aquifers. When the REY poor basaltic water passes the limestones at enhanced temperatures, some calcite dissolves and thereby its aliquot of REY is released and mixed with REY load of the groundwater. More than 99% of the REY is immediately adsorbed onto calcite surfaces [48]. This way, the REY patterns of groundwater change from type t1 to t2, t3, and finally t4 (Figures 6 and 10). At enhanced

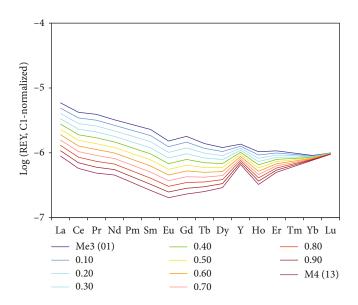


FIGURE 10: Mixing of basaltic and limestone groundwater showing the change in rare earth distribution patterns.

temperatures, release of LREE is faster than that of HREE and Y because their Coulomb binding forces are less for the former bigger than the latter smaller ions. This may qualitatively explain the change in REY patterns of groundwater in the Yarmouk basin.

Although the groundwater of the Yarmouk Gorge is produced from limestone aquifers, their REY patterns still indicate that the groundwater originates from basaltic catchment regions or, more precisely, has passed HFO layers. Although the patterns are similar in shape, the spring waters of Dan and Banyas from limestones of the Mt. Hermon Massif without contact with HFO show higher abundances than the limestone-like waters from the Yarmouk Gorge such as in Himma spring and Mukheibeh well 4(16) (Figure 6(g)). Types t1 to t4 in Figure 5 represent the continuous change of REY patterns due to the interaction of basaltic groundwater after passing the HFO filter t1 and limestones resulting in changes according to t2-t4. These types of patterns result from mixing limestone and basaltic rock waters. It could well be that not the whole volume of water changes due to the interaction but only parts of it and mixing of various types yields the final patterns as shown in Figure 10.

Type t5 (Figure 6(e)) is not showing dissolution of phosphate minerals such as apatite but leachates of altering HFO that loses REY at high levels. The difference between the latter two is that the former should show a positive Eu anomaly [36], whereas the latter is characterized by a negative one.

How does it come that these types of groundwater still show REY patterns typical after infiltration in basaltic catchment areas? The reason is that the REY in calcite surfaces along the pathways in limestones equilibrate with the low REY abundance from the basaltic catchment. Under steadystate conditions, the groundwater from limestones shows patterns achieved by the interaction with groundwater that has passed HFO layers [31]. 5.3. Tracing Mixing by Sr^{2+} and ${}^{87}Sr/{}^{86}Sr$. The above discussed findings, which trace back the genesis of the groundwater in the LYG by variable interactions of basaltic water with late Tertiary brines of Ha'On type and with calcite and limestone of the discharging Cretaceous/Paleogene aquifers, can be fortified by model calculations, which try to resemble the measured ${}^{87}Sr/{}^{86}Sr$ values in the groundwater of the LYG by at least interaction of basaltic water and brine (Figure 7).

Using the fraction $\varepsilon_{\text{brine}}$ of brine in the mixture of brine and basaltic water, the mix of Sr^{2+} (Equation (1)) and the mix of the Sr^{2+} isotope ratios (Equation (2)) are estimated.

$$Sr_{mix} = \varepsilon_{brine} \times Sr_{brine} + (1 - \varepsilon_{brine}) \times Sr_{BW}, \qquad (1)$$

$$^{87}Sr/^{86}Sr_{mix} = ^{87}Sr/^{86}Sr_{brine} \times \varepsilon_{brine} \times Sr_{brine}/Sr_{mix}$$

+ ⁸⁷Sr/⁸⁶Sr_{BW} ×
$$(1 - \varepsilon_{\text{brine}})$$
 × Sr_{BW}/Sr_{mix}, (2)

where index BW is the basaltic water.

Considering the analytical data on Sr²⁺ concentration of groundwater in Table 3, brine, basaltic water, and dissolved calcite and gypsum and their corresponding ⁸⁷Sr/⁸⁶Sr values and the Sr²⁺ concentration of basaltic water must be below 0.5 mg/l, the lowest value in Mukheibeh water. Indeed, pure basaltic water sampled from 2 springs in the cover basalt of the Golan Heights shows $Sr^{2+} = 0.2 \text{ mg/l}$. The Sr^{2+} concentration of the brine may be between 79 mg/l as analyzed in Ha'On brine [2] and 300 mg/l, depending on the amount of dissolution of calcite from limestone with assumed average Sr²⁺ concentrations of 100 mg/mol calcite and about 25 mg/mol gypsum from evaporites [49]. The ⁸⁷Sr/⁸⁶Sr value of basaltic water is 0.70455 to 0.70457, and that of the brine is assumed to be 0.7078, matching the spread of data in Figure 7. The 87Sr/86Sr value of 0.7078 may result from mixing of Late Tertiary Tethys

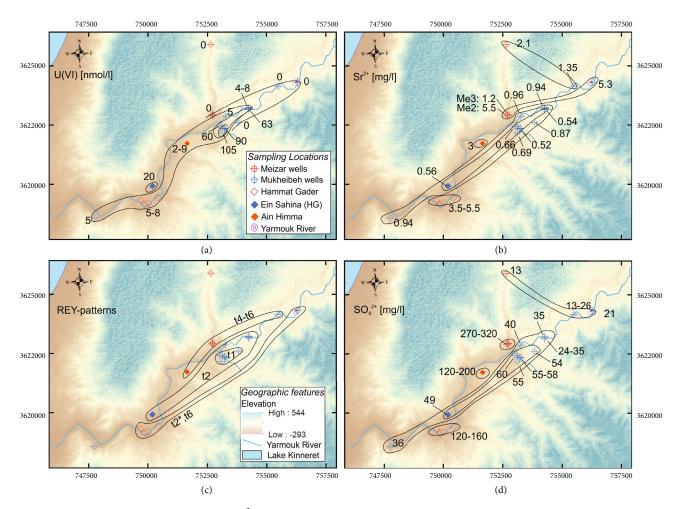


FIGURE 11: Regional distribution of U(VI) (a), Sr^{2+} (b), rare earth distribution patterns (c), and sulfate (d) in the Lower Yarmouk Gorge. Legends given in (a) and (c) are representative for the entire Figure 11.

seawater of 0.7089 [50] and dissolved average Upper Cretaceous limestone in Israel ranging between 0.7076 and 0.7078 (Wilske et al., unpublished data).

The model curves in Figure 6 are fitted by varying Sr²⁺ in basaltic water and in brine as well as the ⁸⁷Sr/⁸⁶Sr value of the brine. Several information can be derived by the following procedure.

- (1) The observed groundwater cannot be fitted by one curve, and the results are sensitive to assumed values of ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ and the resulting $\varepsilon_{\text{brine}}$
- (2) To fit most Mukheibeh groundwater and that of Me3(16), the requested Sr^{2+} concentrations must be 0.05 mg/l, much lower than the observed 0.21 mg/l (Figure 7(a)). Hence, the positive shift of these types of groundwater along the ordinate is assumed to result from the interaction of the proposed fluid mix with calcite and gypsum in the discharging limestone aquifers, which show ${}^{87}Sr/{}^{86}Sr$ values as high as 0.7078 (Wilske et al., unpublished data)
- (3) The fitting curves are invariant in respect to variations of Sr²⁺ in the brine (compare red curve in Figure 6(a) and blue curve in Figure 7(b))

(4) If ⁸⁷Sr/⁸⁶Sr values of brine are larger than 0.7078, neither the group of groundwater from Mukheibeh wells and Meizar 3 nor the group of Hamat Gader, Meizar 2, and Ain Himma can be represented (Figure 7(b))

In summary, the 87 Sr/ 86 Sr of the groundwater in the LYG is the result of relic brine, which is diluted by basaltic water and subsequently dissolves calcite and gypsum and experiences some exchange of Ca²⁺ against Mg²⁺, Na⁺, and K⁺ in marly layers of the aquifers (Figure 3). Only Meizar 3 is mainly limestone water.

5.4. Regional Distribution of Dissolved Species. The regional distribution of U(VI), Sr^{2+} , and REY shows comparable structures, whereas SO_4^{2-} behaves differently. High and low U(VI) concentrations are present in the NE of the Lower Yarmouk Gorge (Figure 11(a)). The high values of 80-105 nmol/l U mark the area in which Mukheibeh wells 1, 2, 4, 5, 6, and 7 produce artesian water from the phosphorite-rich B2 aquifer. These high U(VI) concentrations decrease to 20 nmol/l SW-ward, downstream the Yarmouk River and to both sides of the gorge. North of and NE-ward in the gorge groundwater contain U(VI) below 1 nmol/l. Such low values can only be established by adsorption of U(VI). In the case of

Mukheibeh 8 and 9, this could be HFO in the Hauran plateau; in the case of Meizar, saline groundwater contact with dissolving HFO is documented in Figure 7(f) in the year 2008. According to Shimron [51], basaltic intrusions are present in the Mt. Hermon anticline, being probably responsible for the low U(VI). Additionally, the long pathway through the limestone aquifers from Mt. Hermon to the LYG altered the REY patterns in groundwater to type t4. In 2016, Meizar 3 shows the REY pattern of type t1. However, in 2001, it resembled type t4 of Meizar 2 in 2001 and 2016.

In the central part of the LYG, Sr^{2+} is about 0.55 mg/l (Figure 11(b)), while it increases to 1 mg/l NE-ward, to 3 mg/l in Himma, to 4 mg/l in Hamat Gader, and to 5 mg/l in both Meizar wells 2 and 3.

A similar shell-like behavior is observable in the REY patterns with t1 patterns in the center followed by t2 SW-ward and t3 type SE-ward and patterns of t4 to t6 in the NW (Figure 11(c)).

The high-uranium water shows SO_4^{2-} concentrations of 30-50 mg/l (Figure 11(d)). Outside that central part, the groundwater shows either much higher SO_4^{2-} concentrations, such as in Hamat Gader (150 mg/l) and Meizar (300 mg/l), or almost no dissolved sulfate as in the NE (0.12 mg/l). The increasing SO_4^{2-} outside the marked center may prove depletion of gypsum in the central region of ascending groundwater. Comparing spatial concentration distribution patterns of Sr^{2+} and SO_4^{2-} results in similar patterns, though the concentration levels differ significantly.

Leaching of brines and/or evaporites alters the chemical composition of the initial basaltic water. The light signatures of water isotopes of Meizar 2 support a catchment area at the Mt. Hermon foothills or at elevated places in the Hauran. Meizar 3 water isotopes correspond with those of Hamat Gader and Himma, which may be taken as an indirect proof for its basaltic water. Their variable REY patterns of types t1, t4, and t5 suggest various flow paths of the groundwater including differing contacts with HFO. The shortest pathway of groundwater flow is indicated by REY patterns of type t1 (Figure 6), while patterns of type t2 and t3 suggest a longer pathway with more intense REY exchange with calcite in limestones. The longest pathways are typified by REY pattern type t4. The REY types and the concentrations of U(VI), Sr^{2+} , and SO₄²⁻ characterize complex flow patterns of groundwater towards the gorge.

The most distinct basaltic water is produced from the B1/B2 limestone aquifers fractured by a complex fault system crossing the LYG [15] (Figure 1(b)). This marks the most important flow path of drainage water from the Hauran into the LYG. The springs of Hamat Gader (including Ein Sahina) and Himma are positioned on an uptilted block, whereby both spring fields are separated from the Meizar field. The deep aquifer which is tapped by Meizar 2 also produced water in the shallow well Meizar 3 in 2008.

Although producing from the same aquifer, the hydrochemical differences in groundwater from Ein Himma and Meizar 3 disprove any transboundary flow below the Yarmouk River. The confined water from basaltic infiltration areas in Syria, however, is present on both sides of the gorge.

6. Conclusions

The conjoint study of major, minor, and trace elements, δ^{18} O, δ D, and 87 Sr/ 86 Sr in the groundwater of the LYG reveals the following:

- (i) Mixtures of water from basaltic rocks and limestones are almost omnipresent in the LYG. A clear exception is Meizar 2 that produces groundwater that was infiltrated at the flanks of Mt. Hermon Massif. The mixtures vary from nearly pure basaltic water to nearly pure limestone water. In addition, leaching of residual brines and evaporites enhances the salinity of the various types of groundwater
- (ii) The sources of salinization in limestone aquifers are given by relic brines, leaching of gypsum, and dissolution of calcite. The origin of high sulfate concentrations could be either the Late Triassic gypsum beds occurring at approximate depths of 2000 m or evaporites of the Late Tertiary rift brine of the inland sea. For instance, groundwater in Meizar 2 and Hamat Gader has leached different amounts of gypsum/anhydrite and calcite. Ion exchange of Ca² against Mg²⁺, Na⁺, and K⁺ enhanced the concentrations of the latter. Meizar 3 in 2008 resembles Meizar 2 in the same year. Their REY patterns show that this groundwater had dissolved HFO on its altered flow path. The regional distribution of U(VI), Sr^{2+} , and SO_4^{-2-} and REY distribution patterns reveal that there is a zone with strongly confined groundwater and the hydrochemical composition changes systematically sideward and downstream along the gorge
- (iii) The regional variation of their chemical composition of groundwater is related to a complex flowerstructured fault system crossing the gorge. Groundwater flow in the gorge and the mixing between the different water bodies are controlled by these structural features

Data Availability

All underlying data of the research study are included in the manuscript in the form of Tables 1–3.

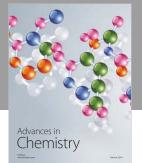
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The research was partly funded by the German Science Foundation (DFG) (grant MA4450/2) and the DESERVE Virtual Institute (VH-VI-527) funded by the Helmholtz-Association of German Research Centers. The authors thank the Mekorot Co. Ltd. and the IDF and JAF for providing access and security during sampling along the international borders.

References


- C. Siebert, P. Möller, S. Geyer et al., "Thermal waters in the Lower Yarmouk Gorge and their relation to surrounding aquifers," *Geochemistry*, vol. 74, no. 3, pp. 425–441, 2014.
- [2] P. Möller, C. Siebert, S. Geyer et al., "Relationship of brines in the Kinnarot Basin, Jordan-Dead Sea Rift Valley," *Geofluids*, vol. 12, no. 2, 181 pages, 2012.
- [3] P. Möller, E. Rosenthal, N. Inbar, and C. Siebert, "Development of the inland sea and its evaporites in the Jordan-Dead Sea Transform based on hydrogeochemical considerations and the geological consequences," *International Journal of Earth Sciences*, vol. 107, no. 7, pp. 2409–2431, 2018.
- [4] N. Goretzki, N. Inbar, M. Kühn et al., "Inverse problem to constrain hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge," *Energy Procedia*, vol. 97, pp. 419–426, 2016.
- [5] F. Magri, N. Inbar, C. Siebert, E. Rosenthal, J. Guttman, and P. Möller, "Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias basin," *Journal of Hydrology*, vol. 520, pp. 342– 355, 2015.
- [6] F. Magri, S. Möller, N. Inbar et al., "2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems - Implications for transboundary flow in the Lower Yarmouk Gorge," *Marine and Petroleum Geology*, vol. 78, pp. 750–758, 2016.
- [7] K. Tzoufka, F. Magri, T. Rödiger et al., "The effect of hydraulic anisotropies on intensely exploited groundwater resources: the numerical evaluation of a hydrothermal transboundary aquifer system in the Middle East," *Hydrogeology Journal*, vol. 26, no. 8, pp. 2875–2890, 2018.
- [8] R. Roded, E. Shalev, and D. Katoshevski, "Basal heat-flow and hydrothermal regime at the Golan-Ajloun hydrological basins," *Journal of Hydrology*, vol. 476, pp. 200–211, 2013.
- [9] Mekorot, National Water Co, Records on wells, water levels water quality and exploitation, Mekorot Company, Tel Aviv, Israel, 1950-2017.
- [10] WAJ, Water Information System Database, accessible via the Ministry of Water and Irrigation, Jordan Minisitry of Water and Irrigation, Amman, Jordan, 2016, http://www.mwi.gov.jo.
- [11] A. Brunner and E. Dekel, "High resolution seismic reflection survey in Southern Golan," Rep.120/1939/88 IPRG–Israel Institute for Petroleum Research and Geophysics, 1989.
- [12] M. Meiler, M. Reshef, and H. Shulman, "Seismic depth-domain stratigraphic classification of the Golan Heights, central Dead Sea Fault," *Tectonophysics*, vol. 510, no. 3-4, pp. 354–369, 2011.
- [13] J. Sahawneh, "Structural control of hydrology, hydrogeology and hydrochemistry along the eastern escarpment of the Jordan Rift Valley, Jordan," PhD. Thesis, Karlsruher Inst. für Technologie (KIT), 2011.
- [14] A. Flexer, "Stratigraphy and facies development of Mt. Scopus Group (Senonian-Paleocene) in Israel and adjacent countries," *Israel Journal of Earth Sciences*, vol. 17, pp. 85–114, 1980.
- [15] N. Inbar, E. Rosenthal, F. Magri et al., "Faulting patterns in the Lower Yarmouk Gorge potentially influence groundwater flow paths," *Hydrology and Earth System Sciences*, vol. 23, no. 2, pp. 763–771, 2019.
- [16] E. Rosenthal, "Hydrogeology and hydrogeochemistry of the Bet Shean and Harod Valleys," vol. 2, Geol Surv Israel, 1972, Rep. H/2/1972, in Hebrew.

- [17] E. Rosenthal, G. Weinberger, A. Almogi-Labin, and A. Flexer, "Late cretaceous-early tertiary development of depositional basins in Samaria (Israel) as part of the evolution of regional folding systems," *AAPG Bulletin*, vol. 84, pp. 997–1042, 1999.
- [18] Z. Kattan, "Chemical and environmental isotope study of the fissured basalt aquifer system of the Yarmouk basin," *IAEA Symposium on isotopes in water resources management*, 1995, Vienna, Austria, 1995IAEA-SM/336/28.
- [19] E. Dafny, A. Burg, and H. Gvirtzman, "Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: the Golan Heights, Israel case study," *Journal* of Hydrology, vol. 330, no. 3-4, pp. 506–524, 2006.
- [20] T. Rödiger, S. Geyer, U. Mallast et al., "Multi-response calibration of a conceptual hydrological model in the semiarid catchment of Wadi al Arab, Jordan," *Journal of Hydrology*, vol. 509, pp. 193–206, 2014.
- [21] E. Salameh, "Using environmental isotopes in the study of recharge-discharge mechanisms of the Yarmouk catchment area in Jordan," *Hydrogeology Journal*, vol. 12, pp. 451–463, 2004.
- [22] K. Schelkes, Groundwater balance of the Jordan-Syrian basalt aquifer, BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 1997.
- [23] UN-ESCWA and BGR (United Nations Economic and Social Commission for Western Asia and Bundesanstalt für Geowissenschaften und Rohstoffe), *Inventory of shared water resources in Western Asia. Chapter 21*, Yarmouk Basin Basalt Aquifer System, 2013.
- [24] W. Wagner, *Groundwater in the Arab Middle East*, Springer-Verlag, Berlin, Heidelberg, 2011.
- [25] A. Sneh, Y. Bartov, T. Weissbrod, and M. Rosensaft, Geological map of Israel 1:2200,000. Israel Geological Survey (4 Sheets), Geological Survey of Israel, Jerusalem, Israel, 1998.
- [26] G. Brew, M. Barazangi, A. K. Al-Maleh, and T. Sawaf, "Tectonic and geologic evolution of Syria," *GeoArabia*, vol. 6, no. 4, pp. 573–616, 2001.
- [27] R. Wolfart, "Hydrogeology of the Damascus basin (Southwest-Syria)," *IAHS Red Books*, vol. 64, pp. 402–413, 1964.
- [28] E. Dafny, H. Gvirtzman, A. Burg, and L. Fleischerc, "The hydrogeology of the Golan basalt aquifer, Israel," *Israel Journal* of *Earth Sciences*, vol. 52, no. 3-4, pp. 139–153, 2003.
- [29] H. Michelson, "The hydrogeology of the southern Golan Heights," Tahal, Tel Aviv. Rep, 1972, HR/72/037.
- [30] H. Michelson, "The geology and paleogeography of the Golan Heights," Tel Aviv University, Tel Aviv. PhD thesis, 1979.
- [31] P. Möller, E. Rosenthal, N. Inbar, and F. Magri, "Hydrochemical considerations for identifying water from basaltic aquifers: the Israeli experience," *Journal of Hydrology: Regional Studies*, vol. 5, pp. 33–47, 2016.
- [32] A. Heimann, "The Dead Sea rift and its margins. Development of Northern Israel in the Pliocene and Pleistocene," PhD Thesis Hebrew Univ, 1990.
- [33] D. Mor, "The volcanism of the Golan Heights," Geol Surv Isr, 1986, Rep.GSI/5/86.
- [34] B. K. Moh'd, The geology of Irbid and Ash Shuna Ash Shamaliyya (Waqqas) Map Amman, Sheets No. 3154-II and 3154-III, Natural Resources Authority, Geology Directorate, Amman, Jordan, 2000.

- [35] M. Tichomirowa, C. Heidel, M. Junghans, F. Haubrich, and J. Matschullat, "Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997-2008) in the region of Freiberg, central-eastern Germany," *Chemical Geology*, vol. 276, no. 1-2, pp. 104–118, 2010.
- [36] P. Möller, E. Rosenthal, P. Dulski, and S. Geyer, "Characterization of recharge areas by rare earth elements and stable isotopes of H₂O," in *The Water of the Jordan Valley*, H. Hötzl, P. Möller, and E. Rosenthal, Eds., pp. 123–148, Springer Verlag, Berlin, Heidelberg, 2009.
- [37] C. Siebert, E. Rosenthal, P. Möller, T. Rödiger, and M. Meiler, "The hydrochemical identification of groundwater flowing to the Bet She'an- Harod multiaquifer system (Lower Jordan Valley) by rare earth elements, yttrium, stable isotopes (H, O) and Tritium," *Applied Geochemistry*, vol. 27, no. 3, pp. 703–714, 2012.
- [38] G. Bergelson, R. Nativ, and A. Bein, "Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel," *Applied Geochemistry*, vol. 14, no. 1, pp. 91–118, 1999.
- [39] O. Klein-BenDavid, E. Sass, and A. Katz, "The evolution of marine evaporitic brines in inland basins: The Jordan-Dead Sea Rift valley," *Geochimica et Cosmochimica Acta*, vol. 68, no. 8, pp. 1763–1775, 2004.
- [40] G. E. Brown Jr., T. P. Trainor, and A. M. Chaka, "Geochemistry of mineral surfaces and factors affecting their chemical reactivity," in *Chemical Bonding at Surfaces and Interfaces*, A. Nilsson, P. LGM, and J. Norskov, Eds., pp. 457–509, Elsevier, New York, 2008.
- [41] E. S. Larsen and D. Gottfried, Distribution of uranium in rocks and minerals of Mesozoic batholith in Western United States, vol. 1070-C, US Geol Surv Bull, 1961.
- [42] T. A. Marshall, K. Morris, G. T. W. Law et al., "Incorporation of uranium into hematite during crystallization from ferrihydrite," *Environmental Science & Technology*, vol. 48, no. 7, pp. 3724–3731, 2014.
- [43] H. E. Roberts, K. Morris, G. T. W. Law et al., "Uranium(V) incorporation mechanisms and stability in Fe(II)/Fe(III) (oxyhydr)oxides," *Environmental Science & Technology Letters*, vol. 4, no. 10, pp. 421–426, 2017.
- [44] M. R. Romero-González, T. Cheng, M. O. Barnett, and E. E. Roden, "Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption," *Radiochimica Acta*, vol. 95, no. 5, 2007.
- [45] G. N. Baturin and A. V. Kochenov, "Uranium in Phosphorites," *Lithology and Mineral Resources*, vol. 36, no. 4, pp. 303–321, 2001.
- [46] V. S. Tripathi, "Comments on "Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits"," *Geochimica et Cosmochimica Acta*, vol. 43, no. 12, pp. 1989-1990, 1979.
- [47] S. Göb, T. Wenzel, M. Bau, D. E. Jacob, A. Loges, and G. Markl, "The redistribution of rare-earth elements in secondary minerals of hydrothermal veins, Schwarzwald, SOUTHWESTERN Germany," *The Canadian Mineralogist*, vol. 49, no. 5, pp. 1305–1333, 2012.
- [48] P. Möller and C. Siebert, "Cycling of calcite and hydrous metal oxides and chemical changes of major element and REE chemistry in monomictic hardwater lake: impact on sedimentation," *Chemie der Erde*, vol. 76, no. 1, pp. 133–148, 2016.
- [49] M. Raab, G. M. Friedman, B. Spiro, A. Starinsky, and I. Zak, "The geological history of Pliocene-Pleistocene evaporites in

Mount Sedom (Israel) and how strontium and sulfur isotopes relate to their origin," *Carbonates and Evaporites*, vol. 15, no. 2, pp. 93–114, 2000.

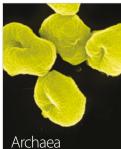
- [50] W. B. F. Ryan, "Modeling the magnitude and timing of evaporative drawdown during the Messinian crisis," *Stratigraphy*, vol. 5, pp. 227–243, 2008.
- [51] A. E. Shimron, "Geochemical exploration and new geological data along the SE flanks of the Hermon Range," Geol Surv Isr, Jerusalem, 1989, Rep GSI/32/89.
- [52] H. Brielmann, "Recharge and discharge mechanism and dynamics in the mountainous northern upper Jordan River catchment, Israel," Ph.D. thesis LMU, Munich, Germany, 2008.
- [53] A. R. Al Charideh and B. A. Zakhem, "Distribution of tritium and stable isotopes in precipitation in Syria," *Hydrological Sciences Journal*, vol. 55, no. 5, pp. 832–843, 2010.

The Scientific World Journal

Applied & Environmental Soil Science

Submit your manuscripts at www.hindawi.com

Advances in Meteorology



International Journal of Biodiversity

International Journal of Agronomy

Microbiology

International Journal of Analytical Chemistry

Advances in Agriculture

Journal of Marine Biology