77 research outputs found
Comparative Analysis of Gene Expression Data Reveals Novel Targets of Senescence-Associated microRNAs
In the last decades, cellular senescence is viewed as a complex mechanism involved in different processes, ranging from tumor suppression to induction of age-related degenerative alterations. Senescence-inducing stimuli are myriad and, recently, we and others have demonstrated the role exerted by microRNAs in the induction and maintenance of senescence, by the identification of a subset of Senescence-Associated microRNAs (SAmiRs) up-regulated during replicative or stress-induced senescence and able to induce a premature senescent phenotype when over-expressed in human primary cells. With the intent to find novel direct targets of two specific SAmiRs, SAmiR-494 and -486-5p, and cellular pathways which they are involved in, we performed a comparative analysis of gene expression profiles available in literature to select genes down-regulated upon replicative senescence of human primary fibroblasts. Among them, we searched for SAmiR’s candidate targets by analyzing with different target prediction algorithms their 3’UTR for the presence of SAmiR-binding sites. The expression profiles of selected candidates have been validated on replicative and stress-induced senescence and the targeting of the 3’UTRs was assessed by luciferase assay. Results allowed us to identify Cell Division Cycle Associated 2 (CDCA2) and Inhibitor of DNA binding/differentiation type 4 (ID4) as novel targets of SAmiR-494 and SAmiR-486-5p, respectively. Furthermore, we demonstrated that the over-expression of CDCA2 in human primary fibroblasts was able to partially counteract etoposide-induced senescence by mitigating the activation of DNA Damage Response
Synthesis and In Vitro Characterization of Selective Cannabinoid CB2 Receptor Agonists: Biological Evaluation against Neuroblastoma Cancer Cells
1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent beta-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 mu M and FG160a = 13.2 mu M in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect
Psoriasis Features in Patients with Inflammatory Bowel Disease
BACKGROUND: Psoriasis and inflammatory bowel diseases (IBD) share common pathways based on immune dysregulation with an important role of tumour necrosis factor-α and Th17 cells, as well as the genetic background. Several studies showed an increased prevalence of psoriasis in IBD patients. However, data regarding psoriasis features in IBD patients are still lacking.
AIM: We aimed to conduct an observational study to assess psoriasis clinical features and its severity in a group of patients with IBD.
METHODS: Dermatological assessment was performed consecutively in 200 IBD patients (123 with CD and 77 with UC) attending the IBD Care Centre of Gastroenterology at the University of Naples Federico II from 2015 to 2016.
RESULTS: A group of 32 from 200 IBD patients (16%) had a familiar history positive for psoriasis, whereas, medical history and dermatologic examination revealed that 18 (9%) IBD patients were affected by psoriasis: 11 out of these 18 subjects (61.2%) had CD, and 7 had UC (38.2%); no significant differences were found between CD and UC groups. Concerning psoriasis severity, the mean psoriasis area severity index score was 3.7.
CONCLUSION: This one-year retrospective study showed that psoriasis and IBD both require the use of immunosuppressive drugs so; we can count on a better treatment outcome for both diseases
New CXCR4 Antagonist Peptide R (Pep R) Improves Standard Therapy in Colorectal Cancer
he chemokine receptor CXCR4 is overexpressed and functional in colorectal cancer. To investigate the role of CXCR4 antagonism in potentiating colon cancer standard therapy, the new peptide CXCR4 antagonist Peptide R (Pep R) was employed. Human colon cancer HCT116 xenograft-bearing mice were treated with chemotherapeutic agents (CT) 5-Fluorouracil (5FU) and oxaliplatin (OX) or 5FU and radio chemotherapy (RT-CT) in the presence of Pep R. After two weeks, CT plus Pep R reduced by 4-fold the relative tumor volume (RTV) as compared to 2- and 1.6-fold reductions induced, respectively, by CT and Pep R. In vitro Pep R addition to CT/RT-CT impaired HCT116 cell growth and further reduced HCT116 and HT29 clonal capability. Thus, the hypothesis that Pep R could target the epithelial mesenchyme transition (EMT) process was evaluated. While CT decreased ECAD and increased ZEB-1 and CD90 expression, the addition of Pep R restored the pretreatment expression. In HCT116 and HT29 cells, CT/RT-CT induced a population of CD133+CXCR4+ cells, supposedly a stem-resistant cancer cell population, while Pep R reduced it. Taken together, the results showed that targeting CXCR4 ameliorates the effect of treatment in colon cancer through inhibition of cell growth and reversal of EMT treatment-induced markers, supporting further clinical studies
Overexpression of Both CXC Chemokine Receptor 4 and Vascular Endothelial Growth Factor Proteins Predicts Early Distant Relapse in Stage II-III Colorectal Cancer Patients
Abstract
Purpose: CXC chemokine receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF) are implicated in the metastatic process of malignant tumors. However, no data are currently available on the biological relationship between these molecules in colorectal cancer. We studied whether CXCR4 and VEGF expression could predict relapse and evaluated in vitro the contribution of CXCR4 in promoting clonogenic growth, VEGF secretion, and intercellular adhesion molecule-1 (ICAM-1) expression of colorectal cancer cells.
Experimental Design: CXCR4 and VEGF were studied in colorectal cancer tissues and in Lovo, HT29, and SW620 colorectal cancer cell lines by immunohistochemistry. Correlations with baseline characteristics of patients and tumors were analyzed by χ2 test. VEGF secretion induced by CXCL12 was measured by ELISA. The effect of CXCL12 on ICAM-1 expression was evaluated by flow cytometry. Clonogenic growth induced by CXCL12 was determined by clonogenic assays. Functional effects induced by CXCL12 were prevented by the administration in vitro of AMD3100, a bicyclam noncompetitive antagonist of CXCR4.
Results: Seventy-two patients, seen between January 2003 and January 2004, were studied. CXCR4 was absent in 16 tumors (22.2%); it was expressed in ≤50% of cells in 25 (34.7%) tumors and in >50% of cells in 31 (43.0%) tumors. VEGF was absent in 17 (23.6%) tumors; it was expressed in ≤50% of cells in 16 (22.2%) tumors and in >50% of cells in 39 (54.2%) tumors. There was a significant association between CXCR4 expression and lymph nodal status (P = 0.0393). There were significant associations between VEGF and tumor invasion (P = 0.0386) and lymph nodal involvement (P = 0.0044). American Joint Committee on Cancer stage (P = 0.0016), VEGF expression (P = 0.0450), CXCR4 expression (P = 0.0428), and VEGF/CXCR4 expression (P = 0.0004) had a significant prognostic value for disease-free survival with univariate analysis. The predictive ability of the American Joint Committee on Cancer stage and of the concomitant and high expression of VEGF and CXCR4 was confirmed by multivariate analysis. Prognosis is particularly unfavorable for patients whose primary tumors express CXCR4 and VEGF in >50% of cells (median disease-free survival in relapsed patients, 5.8 months; hazard ratio of relapse, 8.23; 95% confidence interval, 7.24-14.29). In clonogenic assays, CXCL12 (20 ng/mL/d) significantly increased the number of clones in SW620, HT29, and Lovo cells at 7 and 14 days. Again, CXCL12 was able to stimulate VEGF secretion in SW620, HT29, and Lovo cells as well as up-regulated ICAM-1. These effects were prevented by the administration of AMD3100 (1 μmol/L).
Conclusions: We have shown that concomitant and high expression of CXCR4 and VEGF is a strong and independent predictor of early distant relapse in colorectal cancer. CXCR4 triggers a plethora of phenomena, including stimulation of clonogenic growth, induction of VEGF release, and ICAM-1 up-regulation. These data support the inhibition of CXCR4 to prevent the development of colorectal cancer metastasis
Switching from VEDOlizumab intravenous to subcutaneous formulation in ulcerative colitis patients in clinical remission: The SVEDO Study, an IG-IBD study
Background: The administration of biological drugs in inflammatory bowel diseases (IBD) is increasingly moving from intravenous to subcutaneous formulations.
Aims: To evaluate the efficacy and safety of vedolizumab subcutaneous administration after switching from intravenous administration in ulcerative colitis (UC) patients in corticosteroid-free clinical remission.
Methods: An observational, multicentre, prospective study was conducted by the Italian Group for the study of IBD (IG-IBD). UC patients in clinical remission (pMAYO < 2) not receiving steroids for > 8 months before the switch, and with at least 6 months of follow-up were included. Switch from intravenous to subcutaneous vedolizumab was defined as successful in patients not experiencing a disease flare (pMAYO ≥ 2) or needing oral steroids or stopping subcutaneous vedolizumab during the 6 months of follow-up after the switch.
Results: Overall, 168 patients were included. The switch was a success in 134 patients (79.8%). Vedolizumab retention rate was 88.7% at month six. C-reactive protein and faecal calprotectin values did not change after the switch (p = 0.07 and p = 0.28, respectively). Ten of the 19 patients who stopped subcutaneous formulation switched back to intravenous formulation recapturing clinical remission in 80%. Side effects were observed in 22 patients (13.1%).
Conclusion: Effectiveness of switching from intravenous to subcutaneous vedolizumab formulation in UC patients in steroid-free clinical remission is confirmed in a real-world setting
Combination of dl922-947 Oncolytic Adenovirus and G-Quadruplex Binders Uncovers Improved Antitumor Activity in Breast Cancer
G-quadruplexes (G4s) are nucleic secondary structures characterized by G-tetrads. G4 motif stabilization induces DNA damage and cancer cell death; therefore, G4-targeting small molecules are the focus of clinical investigation. DNA destabilization induced by G4 ligands might potentiate the anticancer activity of agents targeting DNA or inhibiting its repair such as oncolytic viruses. This study represents the first approach combining G4 ligands, BRACO-19 (B19), pyridostatin (PDS), and the adenovirus dl922-947 in breast cancer cells. We demonstrated that G4 binders and dl922-947 induce cytotoxicity in breast cancer cells (MDA-MB-231 and MCF-7) and at higher doses in other neoplastic cell lines of thyroid (BHT-101 cells) and prostate (PC3 cells). G4 binders induce G4 motifs distributed in the S and G2/M phases in MCF-7 cells. G4 binder/dl922-947 combination increases cell cytotoxicity and the accumulation in subG0/G1. Indeed, G4 binders favor viral entry and replication with no effect on coxsackie and adenovirus receptor. Notably, dl922-947 induces G4 motifs and its combination with PDS potentiates this effect in MCF-7 cells. The agents alone or in combination similarly enhanced cell senescence. Additionally, PDS/dl922-947 combination inactivates STING signaling in MDA-MB-231 cells. Our results suggest that G4 binder/virotherapy combination may represent a novel therapeutic anticancer approach
Cross Talk of Macrophages with Tumor Microenvironment Cells and Modulation of Macrophages in Cancer by Virotherapy
Cellular compartments constituting the tumor microenvironment including immune cells, fibroblasts, endothelial cells, and mesenchymal stromal/stem cells communicate with malignant cells to orchestrate a series of signals that contribute to the evolution of the tumor microenvironment. In this study, we will focus on the interplay in tumor microenvironment between macrophages and mesenchymal stem cells and macrophages and fibroblasts. In particular, cell–cell interaction and mediators secreted by these cells will be examined to explain pro/anti-tumor phenotypes induced in macrophages. Nonetheless, in the context of virotherapy, the response of macrophages as a consequence of treatment with oncolytic viruses will be analyzed regarding their polarization status and their pro/anti-tumor response
History of how viruses can fight cancer: From the miraculous healings to the approval of oncolytic viruses
: Since the nineteenth century, several reports in the historical medical literature emphasized that, occasionally, cancer patients showed a clinical remission, called "Saint Peregrine tumor" as a result of natural infections. Moreover, additional evidence indicated that viruses show a tropism toward cancer cells, leading to the discovery of oncolytic activity of several viruses, called oncolytic viruses (OVs). With the technological and scientific advancements, the advent of rodent models, the establishment of in vitro cell lines, the introduction of methods for virus propagation, several attempts through the 1950s and 1970s have been made to increase OVs specificity, efficacy and safety; however, inconclusive/negative results have been reached and many researchers abandoned the field. Only in the later 1990s, the genetic engineering and the recombinant DNA techniques that allowed the generation of potent, specific and safe OVs and a better understanding of cancer cells renewed the interest in virotherapy. Currently, virotherapy represents a cancer therapeutic strategy based on the use of OVs that selectively infect and lyse cancer cells, without harming normal cells. Over the past years, several "natural" and "genetic engineered" viruses, have been investigated in clinical studies and some of them revealed encouraging results. Recently, the clinical use of OVs has also been supported by the immune stimulatory property of OVs against tumor cells. Here, we analyze the early oncolytic virotherapy before genetic engineering to highlight the relevant progresses reached, and the mechanism to stimulate host immune response, a significant challenge in current virotherapy field
- …