26 research outputs found

    The correlation between CRB1 variants and the clinical severity of Brazilian patients with different inherited retinal dystrophy phenotypes

    Get PDF
    Inherited retinal dystrophies are characterized by progressive retina degeneration and mutations in at least 250 genes have been associated as disease-causing. CRB1 is one of many genes analyzed in molecular diagnosis for inherited retinal dystrophy. Crumbs homolog-1 protein encoded by CRB1 is important for cell-to-cell contact, polarization of epithelial cells and the morphogenesis of photoreceptors. Pathogenic variants in CRB1 lead to a huge variety of phenotypes ranging from milder forms of inherited retinal dystrophy, such as retinitis pigmentosa to more severe phenotypes such as Leber congenital amaurosis. In this study, seven novel likely-pathogenic variants were identified: four missense variants (p.Leu479Pro, p.Ala921Pro, p.Cys948Arg and p. Asp1031Asn), two frameshift deletions (c. 2536_2542del7 and c. 3460_3461delTG) and one frameshift indel variant (c. 276_294delinsTGAACACTGTAC). Furthermore, two patients with cone-rod dystrophy due to mutations in CRB1 were reported, supporting previous data, in which mutations in CRB1 can also cause cone-rod dystrophy. Finally, our data suggested there was a direct relation between phenotype severity and the mutation effect on protein functionality in 15 Brazilian CRB1 patients.CAPESCNPqFAPESPUniv Fed São Paulo, Dept Ophthalmol, São Paulo, BrazilUniv Fed São Paulo, Dept Biophys, São Paulo, BrazilUniv Fed São Paulo, Dept Ophthalmol, São Paulo, BrazilUniv Fed São Paulo, Dept Biophys, São Paulo, BrazilWeb of Scienc

    Effects of FGF-2 and EGF removal on the differentiation of mouse neural precursor cells

    Get PDF
    Cell therapy for neurological disorders has advanced, and neural precursor cells (NPC) may become the ideal candidates for neural transplantation in a wide range of diseases. However, additional work has to be done to determine either the ideal culture environment for NPC expansion in vitro, without altering their plasticity, or the FGF-2 and EGF mechanisms of cell signaling in neurospheres growth, survival and differentiation. In this work we evaluated mouse neurospheres cultured with and without FGF-2 and EGF containing medium and showed that those growth factors are responsible for NPC proliferation. It is also demonstrated that endogenous production of growth factors shifts from FGF-2 to IGF-1/PDGFb upon EGF and FGF-2 withdrawal. Mouse NPC cultured in suspension showed different patterns of neuronal localization (core versus shell) for both EGF and FGF-2 withdrawal and control groups. Taken together, these results show that EGF and FGF-2 removal play an important role in NPC differentiation and may contribute to a better understanding of mechanisms of NPC differentiation. Our findings suggest that depriving NPC of growth factors prior to grafting might enhance their chance to effectively integrate into the host.As terapias celulares para doenças neurológicas têm avançado e células precursoras neurais (NPC) surgem como candidatas ideais para o transplante de células neurais em muitas doenças. No entanto, trabalhos adicionais devem ser feitos para determinar o ambiente de cultivo ideal para a expansão in vitro das NPC, sem alterar sua plasticidade, e os mecanismos de sinalização celular do fator de crescimento epidérmico (EGF) e fator de crescimento de fibroblasto 2 (FGF-2) no crescimento, sobrevivência e diferenciação da neuroesfera. Nesse trabalho avaliamosNPCcultivadas na presença e na ausência de FGF-2 e EGF e mostramos que esses fatores de crescimento são responsáveis pela proliferação das NPC. Também foi demonstrado que a produção endógena de fatores de crescimento alterna de FGF-2 a fator de crescimento de insulina 1 (IGF-1) e fator de crescimento derivado de plaquetas b (PDGFb) após remoção de EGF e FGF-2. NPC de camundongo cultivadas em suspensão mostraram padrões de localização neuronal distintos (centro versus borda) tanto no grupo controle como no grupo sem EGF e FGF-2. Juntos, esses resultados mostram que a remoção de EGF e FGF-2 exerce importante ação na diferenciação de NPC e possivelmente contribui para melhor compreensão dos mecanismos envolvidos na diferenciação. Nossos achados sugerem que, privando as NPC de fatores de crescimento antes do transplante, talvez aumente as chances de que as células efetivamente se integrem ao hospedeiro.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Departamento de FisiologiaUniversidade Federal de São Paulo (UNIFESP) Departamento de BiofísicaUNIFESP, Depto. de FisiologiaUNIFESP, Depto. de BiofísicaSciEL

    Short-Term Withdrawal of Mitogens Prior to Plating Increases Neuronal Differentiation of Human Neural Precursor Cells

    Get PDF
    Background: Human neural precursor cells (hNPC) are candidates for neural transplantation in a wide range of neurological disorders. Recently, much work has been done to determine how the environment for NPC culture in vitro may alter their plasticity. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) are used to expand NPC; however, it is not clear if continuous exposure to mitogens may abrogate their subsequent differentiation. Here we evaluated if short-term removal of FGF-2 and EGF prior to plating may improve hNPC differentiation into neurons.Principal Findings: We demonstrate that culture of neurospheres in suspension for 2 weeks without EGF-FGF-2 significantly increases neuronal differentiation and neurite extension when compared to cells cultured using standard protocols. in this condition, neurons were preferentially located in the core of the neurospheres instead of the shell. Moreover, after plating, neurons presented radial rather than randomly oriented and longer processes than controls, comprised mostly by neurons with short processes. These changes were followed by alterations in the expression of genes related to cell survival.Conclusions: These results show that EGF and FGF-2 removal affects NPC fate and plasticity. Taking into account that a three dimensional structure is essential for NPC differentiation, here we evaluated, for the first time, the effects of growth factors removal in whole neurospheres rather than in plated cell culture.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institutos do Milenio de Bioengenharia TecidualUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Ciencias Biomed, BR-21941 Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilFAPESP: fellowCNPq: fellowWeb of Scienc

    Development of molecular diagnostics for detection of large deletions and insertions in Mucopolysaccharidoses type II

    No full text
    Em diversas doencas hereditarias com muitas mutacoes causais, como a Mucopolissacaridoses tipo II, o sequenciamento do DNA e considerado padrao-ouro para determinacao de mutacoes. Porem, esse tipo de analise envolvendo amplificacoes de fragmentos, contendo exons e regioes flanqueadoras, pode falhar na deteccao de grandes delecoes e insercoes/duplicacoes, resultando em erros no diagnostico. Esses erros podem ser evitado com a quantificacao dos exons atraves de analises de fragmentos. Por esta razao, desenvolvemos um protocolo de dosagem exonica do gene IDS visando melhorar o ja existente diagnostico molecular para Sindrome de HunterFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)BV UNIFESP: Teses e dissertaçõe

    Segregation analyze in Stargardt patients' families: investigation of complex allele in ABCA4 gene

    No full text
    FAPESP - Fundacao de amparo a pesquisa do estado de Sao PauloUniv Fed Sao Paulo, Ophthalmol, Sao Paulo, BrazilUniv Fed Sao Paulo, Biophys, Sao Paulo, BrazilMol Vis Lab, Portland, OR USAUniv Fed Sao Paulo, Biophys, Sao Paulo, BrazilWeb of Scienc

    New mutations in the GLA gene in Brazilian families with Fabry disease

    No full text
    Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012FAPESP [2008/06676-8]CNP
    corecore