29 research outputs found
Ageing-induced shrinkage of intervessel pit membranes in xylem of Clematis vitalba modifies its mechanical properties as revealed by atomic force microscopy
Bordered pit membranes of angiosperm xylem are anisotropic, mesoporous media between neighbouring conduits, with a key role in long distance water transport. Yet, their mechanical properties are poorly understood. Here, we aim to quantify the stiffness of intervessel pit membranes over various growing seasons. By applying an AFM-based indentation technique “Quantitative Imaging” we measured the effective elastic modulus (Eeffective) of intervessel pit membranes of Clematis vitalba in dependence of size, age, and hydration state. The indentation-deformation behaviour was analysed with a non-linear membrane model, and paired with magnetic resonance imaging to visualise sap-filled and embolised vessels, while geometrical data of bordered pits were obtained using electron microscopy. Eeffective was transformed to the geometrically independent apparent elastic modulus Eapparent and to aspiration pressure Pb. The material stiffness (Eapparent) of fresh pit membranes was with 57 MPa considerably lower than previously suggested. The estimated pressure for pit membrane aspiration was 2.20+28 MPa. Pit membranes from older growth rings were shrunken, had a higher material stiffness and a lower aspiration pressure than current year ones, suggesting an irreversible, mechanical ageing process. This study provides an experimental-stiffness analysis of hydrated intervessel pit membranes in their native state. The estimated aspiration pressure suggests that membranes are not deflected under normal field conditions. Although absolute values should be interpreted carefully, our data suggest that pit membrane shrinkage implies increasing material stiffness, and highlight the dynamic changes of pit membrane mechanics and their complex, functional behaviour for fluid transport
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Influence of ROCK Pathway Manipulation on the Actin Cytoskeleton Height
The actin cytoskeleton with its dynamic properties serves as the driving force for the movement and division of cells and gives the cell shape and structure. Disorders in the actin cytoskeleton occur in many diseases. Deeper understanding of its regulation is essential in order to better understand these biochemical processes. In our study, we use metal-induced energy transfer (MIET) as a tool to quantitatively examine the rarely considered third dimension of the actin cytoskeleton with nanometer accuracy. In particular, we investigate the influence of different drugs acting on the ROCK pathway on the three-dimensional actin organization. We find that cells treated with inhibitors have a lower actin height to the substrate while treatment with a stimulator for the ROCK pathway increases the actin height to the substrate, while the height of the membrane remains unchanged. This reveals the precise tuning of adhesion and cytoskeleton tension, which leads to a rich three-dimensional structural behaviour of the actin cytoskeleton. This finetuning is differentially affected by either inhibition or stimulation. The high axial resolution shows the importance of the precise finetuning of the actin cytoskeleton and the disturbed regulation of the ROCK pathway has a significant impact on the actin behavior in the z dimension
Cell shape and tension alter focal adhesion structure
Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins