951 research outputs found

    Minimizing Crossings in Constrained Two-Sided Circular Graph Layouts

    Get PDF
    Circular layouts are a popular graph drawing style, where vertices are placed on a circle and edges are drawn as straight chords. Crossing minimization in circular layouts is NP-hard. One way to allow for fewer crossings in practice are two-sided layouts that draw some edges as curves in the exterior of the circle. In fact, one- and two-sided circular layouts are equivalent to one-page and two-page book drawings, i.e., graph layouts with all vertices placed on a line (the spine) and edges drawn in one or two distinct half-planes (the pages) bounded by the spine. In this paper we study the problem of minimizing the crossings for a fixed cyclic vertex order by computing an optimal k-plane set of exteriorly drawn edges for k >= 1, extending the previously studied case k=0. We show that this relates to finding bounded-degree maximum-weight induced subgraphs of circle graphs, which is a graph-theoretic problem of independent interest. We show NP-hardness for arbitrary k, present an efficient algorithm for k=1, and generalize it to an explicit XP-time algorithm for any fixed k. For the practically interesting case k=1 we implemented our algorithm and present experimental results that confirm the applicability of our algorithm

    On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem

    Get PDF
    We study the parameterized complexity of the Bounded-Degree Vertex Deletion problem (BDD), where the aim is to find a maximum induced subgraph whose maximum degree is below a given degree bound. Our focus lies on parameters that measure the structural properties of the input instance. We first show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. We thereby resolve the main open question stated in Betzler, Bredereck, Niedermeier and Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback vertex set number. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to the decompositional parameter treecut width and a novel problem-specific parameter called the core fracture number

    Minimum Link Fencing

    Get PDF
    We study a variant of the geometric multicut problem, where we are given a set ? of colored and pairwise interior-disjoint polygons in the plane. The objective is to compute a set of simple closed polygon boundaries (fences) that separate the polygons in such a way that any two polygons that are enclosed by the same fence have the same color, and the total number of links of all fences is minimized. We call this the minimum link fencing (MLF) problem and consider the natural case of bounded minimum link fencing (BMLF), where ? contains a polygon Q that is unbounded in all directions and can be seen as an outer polygon. We show that BMLF is NP-hard in general and that it is XP-time solvable when each fence contains at most two polygons and the number of segments per fence is the parameter. Finally, we present an O(n log n)-time algorithm for the case that the convex hull of ??{Q} does not intersect Q

    Local Complexity of Polygons

    Get PDF
    Many problems in Discrete and Computational Geometry deal with simple polygons or polygonal regions. Many algorithms and data-structures perform considerably faster, if the underlying polygonal region has low local complexity. One obstacle to make this intuition rigorous, is the lack of a formal definition of local complexity. Here, we give two possible definitions and show how they are related in a combinatorial sense. We say that a polygon PP has point visibility width w=pvww=pvw, if there is no point q∈Pq\in P that sees more than ww reflex vertices. We say that a polygon PP has chord visibility width w=cvww=cvw , if there is no chord c=seg(a,b)⊂Pc=\textrm{seg}(a,b)\subset P that sees more than w reflex vertices. We show that cvw≤pvwO(pvw), cvw \leq pvw ^{O( pvw )}, for any simple polygon. Furthermore, we show that there exists a simple polygon with cvw≥2Ω(pvw). cvw \geq 2^{\Omega( pvw )}.Comment: 7 pages, 5 figure

    Extending Partial 1-Planar Drawings

    Get PDF
    Algorithmic extension problems of partial graph representations such as planar graph drawings or geometric intersection representations are of growing interest in topological graph theory and graph drawing. In such an extension problem, we are given a tuple (G,H,?) consisting of a graph G, a connected subgraph H of G and a drawing ? of H, and the task is to extend ? into a drawing of G while maintaining some desired property of the drawing, such as planarity. In this paper we study the problem of extending partial 1-planar drawings, which are drawings in the plane that allow each edge to have at most one crossing. In addition we consider the subclass of IC-planar drawings, which are 1-planar drawings with independent crossings. Recognizing 1-planar graphs as well as IC-planar graphs is NP-complete and the NP-completeness easily carries over to the extension problem. Therefore, our focus lies on establishing the tractability of such extension problems in a weaker sense than polynomial-time tractability. Here, we show that both problems are fixed-parameter tractable when parameterized by the number of edges missing from H, i.e., the edge deletion distance between H and G. The second part of the paper then turns to a more powerful parameterization which is based on measuring the vertex+edge deletion distance between the partial and complete drawing, i.e., the minimum number of vertices and edges that need to be deleted to obtain H from G
    • …
    corecore