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Abstract

Many problems in Discrete and Computational Geometry deal with
simple polygons or polygonal regions. Many algorithms and data-structures
perform considerably faster, if the underlying polygonal region has low
local complexity. One obstacle to make this intuition rigorous, is the
lack of a formal definition of local complexity. Here, we give two possible
definitions and show how they are related in a combinatorial sense. We say
that a polygon P has point visibility width w = JpvwK, if there is no point
q ∈ P that sees more than w reflex vertices. We say that a polygon P has
chord visibility width w = JcvwK, if there is no chord c = seg(a, b) ⊂ P that
sees more than w reflex vertices. We show that

JcvwK ≤ JpvwKO(JpvwK) ,

for any simple polygon. Furthermore, we show that there exists a simple
polygon with

JcvwK ≥ 2Ω(JpvwK).

1 Introduction

In Discrete and Computational Geometry we study many problems with respect
to the input size n and other natural parameters. One famous example is the
computation of the convex hull of a set of points in the plane. While Θ(n log n)
time is worst case possible, this can be improved to Θ(n log h), where h is the
number of vertices on the convex hull [4]. Here, the number of vertices on
the convex hull is a natural parameter to study this problem. We also say
sometimes that the algorithm is output-sensitive. Another famous example, is
the spread ∆ of a set of points in the plane. That is the ratio between the largest

∗Supported by the Netherlands Organisation for Scientific Research (NWO) under project
no. 612.001.651.

†Supported by the Swiss National Science Foundation within the collaborative DACH
project Arrangements and Drawings as SNSF Project 200021E-171681.

‡The second author’s full last name consists of two words and is Mallik Reddy. However,
she consistently refers to herself with the first word of her last name being abbreviated.

§Supported by the NWO Veni project EAGER.

1

ar
X

iv
:2

10
1.

07
55

4v
1 

 [
cs

.C
G

] 
 1

9 
Ja

n 
20

21



Figure 1: The polygon on the left has intuitively lower local complexity than on
the right.

and the smallest distance, between any two points. Efrat and Har-Peled were
the first to find an approximation algorithm for the art gallery problem under
the assumption that the underlying set of vertices has bounded spread [2]. A
third example is the number of reflex vertices of a polygon. This parameter gave
raise to some FPT algorithms for the art gallery problem [1].

In this work, we introduce two new parameters that are meant to capture
rigorously the idea of local complexity. Consider the polygons shown in Figure 1,
most researchers would probably agree that the polygon on the left has lower
local complexity than the polygon on the right. Yet, it is not straightforward
how to define this rigorously in a mathematical sense.

Here, we give two possible definitions and show how they are related in
a combinatorial sense. We say that a polygon P has point visibility width
w = JpvwK, if w is the smallest number such that there is no point q ∈ P
that sees more than w reflex vertices. We say that a polygon P has chord
visibility width w = JcvwK, if w is the smallest number such that there is no
chord c = seg(a, b) ⊂ P that sees more than w reflex vertices.

We show the following theorem.

Theorem 1. For every polygon with chord visibility width JcvwK and point
visibility width JpvwK, it holds that

JpvwK ≤ JcvwK ≤ JpvwKO(JpvwK)
.

Moreover, there are polygons such that

JcvwK ≥ 2Ω(JpvwK).

Note that Hengeveld and Miltzow already defined the notion of chord visibility
width in a very similar way [3]. Specifically, they showed that the art gallery
problem admits an FPT algorithm with respect to chord visibility width. For a
parameter to be interesting to study, we usually have three criteria.

naturalness: Although there is no definition of what it means to be mathemat-
ically natural, many researchers seem to have a common under-
standing of this notion.
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relevance: The parameter is at least for some fraction of instances reasonably
low.

profitable: Using the parameter, we should be able to design better algorithms
and prove useful run time upper bounds.

We believe that both parameters are mathematically natural. Theorem 1
indicates that the chord visibility width can be exponentially larger than the
point visibility width. Thus we would expect that chord visibility width is
potentially more profitable. We would expect that both parameters are equally
relevant as the example that we give is fairly contrived. The remainder of this
paper is dedicated to proving Theorem 1.

2 Chord visibility width vs Point visibility width

We prove Theorem 1 in two parts. First, we show the second half of the theorem
in Section 2.1 by constructing a polygon for which it holds that JcvwK ≥ 2Ω(JpvwK).
Second, we show the first half of Theorem 1 in Section 2.2 by analysing how the
reflex vertices visible from a chord in a simple polygon P restrict each others
vision and relating this to the point visibility width of the polygon.

2.1 Lower bound

k − 1 layers

k − 2 layers

bridgec

Figure 2: Construction of the Iterated Comb.

We construct a polygon P , called the Iterated Comb, see Figure 2. In the
following, let k ∈ N. The Iterated Comb consists of k layers, each layer consists
of two spikes and each spike further splits into two more spikes in the subsequent
layer. Observe, that the entire polygon is visible from the chord connecting the
two left-most points of the polygon. The distance between consecutive spikes
in a layer, referred to as the bridge, is adjusted such that if at least one vertex
in the interior of a spike is visible from a point p on c, then p cannot see any
interior vertex of any other spike. This property is achieved by stretching the
bridges vertically. More specifically, for 1 < i ≤ k, the length of the bridge of
the ith layer is increased such that the property holds for layer i and then the
bridge of the previous layer is adjusted accordingly. By iteratively stretching the
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bridges from the last layer to the first layer, it can be ensured that the property
holds for every layer. This property is illustrated in Figure 3 for k = 2. In the
first layer, the point p sees an interior vertex of the first spike and no interior
vertex of the second spike. Similarly, in the second layer point p sees an interior
vertex of the second spike and no interior vertex of the first spike.

p

Figure 3: Point p sees interior points of at most one spike of any layer

Chord visibility width of the Iterated Comb Clearly, the chord which
sees the highest number of reflex vertices is the chord defined by the two left-most
vertices. Let this chord be c. The number of reflex vertices of the first layer
visible from c is two. Similarly, the number of reflex vertices of the ith layer
visible from c is 2i. Summing up over all k layers, the number of reflex vertices
visible from c is Θ(2k+1), and hence JcvwK = Θ(2k+1).

Point visibility width of the Iterated Comb

Claim 1. Chord c contains at least one of the points in P which see the highest
number of reflex vertices of P .

Proof. Let q be a point in polygon P which sees the highest number of reflex
vertices of P . Let p be a point on chord c which has the same y-coordinate as q.
Assume p 6= q. Let r be a reflex vertex visible from q. Since P is monotone with
respect to y-axis, the triangle pqr must be empty. This implies that r is visible
from p as well. Hence, the point p also sees the highest number of reflex vertices
in P since p sees at least as much as q. Refer to Figure 4 for an illustration.

Without loss of generality, assume the point with highest visibility is the
topmost point on c, denoted by p. Both the reflex vertices in layer one are visible
from p. In each subsequent layer, p can see the reflex vertices that are in the
interior of the first spike, which is two reflex vertices, p cannot see any of the
other reflex vertices in the other spikes by construction. Summing it up, we can
conclude that 2k reflex vertices are visible from p, and thus JpvwK = 2k. Hence
the Iterated Comb has JcvwK ≥ 2Ω(JpvwK).
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qp

r

Figure 4: Point p sees all the reflex vertices visible from q

u

v

I(v)

a

b

Figure 5: The vertex v sees a subinterval I(v) ⊆ s which is restricted by a and
u.

2.2 Upper bound

Next, we show that we can upper bound the chord visibility width in terms of
the point visibility width.

To this end, we prove the following lemma.

Lemma 2. For every simple polygon, it holds that

JcvwK ≤ JpvwKO(JpvwK)
.

The rest of this paragraph is dedicated to the proof of Lemma 2.
For that purpose assume, we are given a simple polygon P together with

a chord s ⊂ P . Furthermore, we assume that no point in P sees more than
k = JpvwK reflex vertices of P . Let us denote by R the set of all reflex vertices
that see at least one point of s = seg(a, b). Furthermore, we also include the
two endpoints of s in the set R. As P is a simple polygon it holds that every
reflex vertex r ∈ R \ {a, b} sees a subsegment I(r) ⊆ s. For convenience, we also
call I(r) an interval.

Note that every interval is restricted by exactly two points in R, see Figure 5.
In case of ambiguity, due to collinearities, we say the point in R closer to s is
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the restricting point. Those vertices can be either the endpoints of s (a and b)
or a different reflex vertex in R. We show the following claim.

Claim 2. If u is a reflex vertex that restricts the reflex vertex v then it holds
that

I(v) ⊆ I(u).

Proof. The triangle T formed by I(v) and v is trivially convex and fully contained
inside P . The reflex vertex u is on the boundary of the triangle and thus sees
every point of T . In particular also I(v).

Given the previous claim, we construct the visibility restriction graph G as
follows. The vertices are formed by the points in R. We say that uv forms a
directed edge, if u is restricted by v. We summarize a few useful properties of G
in the following claim.

Claim 3. The visibility restriction graph of a polygon with point visibility width
at most k has the following properties.

1. The segment endpoints a, b are the only two sinks.

2. The out-degree is two for every vertex v ∈ R \ {a, b}.

3. The in-degree is at most k − 1 for every vertex v ∈ R.

4. The longest path has at most k + 1 vertices.

Proof. By definition, every reflex vertex is restricted by exactly two vertices in
R. This implies Item 1 and 2.

Any reflex vertex v can see itself and all its neighbors. Its in-degree neighbors
are also reflex vertices. As no point can see more than k reflex vertices v has at
most k − 1 in-degree neighbors. This concludes the proof of Item 3.

Finally, to prove Item 4, let p = u1u2 . . . ul be a directed path. Then it holds
that there is a point

q ∈ I(ul) ⊆ . . . ⊆ I(u2) ⊆ I(u1) = s.

The point q sees all reflex vertices of the path p. As no point sees more than k
reflex vertices, it holds that p has at most k reflex vertices. As all but potentially
the first vertex is a reflex vertex, we have l ≤ k + 1.

The properties of the last claim enable us to give an upper bound on the size
of G and thus also on the size of R.

Claim 4. The visibility restriction graph G of a polygon with point visibility
width JpvwK = k has at most kO(k) vertices.

Proof. We organize G into layers depending on the distance from a and b. Note
that if layer i has t vertices then layer (i + 1) has at most t · k vertices. As there
are at most k + 1 layers and the first layer has size two we get that G has at
most

2 + 2k + 2k2 + 2k3 + . . . + 2kk = kO(k)

vertices.
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3 Conclusion

We believe that local complexity has the potential to be a useful parameter. We
gave two ways to define local complexity in a rigorous way and showed how those
two ways relate to one another. We want to end with a few open questions.

1. Can we find algorithms and data structures that can make use of low local
complexity?

2. Can we compute or approximate the point visibility width and chord
visibility width in an efficient manner? Note that this is more a theoretical
question. We do not necessarily need to know the chord visibility width of
a polygon to use the concept in the design and analysis of an algorithm.

3. Are there other ways to formalize the idea of low local complexity within
a polygonal region?
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