58 research outputs found
The THO complex as a key mRNP biogenesis factor in development and cell differentiation
The THO complex is a key component in the co-transcriptional formation of messenger ribonucleoparticles that are competent to be exported from the nucleus, yet its precise function is unknown. A recent study in BMC Biology on the role of the THOC5 subunit in cell physiology and mouse development provides new clues to the role of the THO complex in cell differentiation
Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension
Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen
Evaluation of a monostatic STAP-radar range-compensation method applied to selected bistatic configurations
The detection of slow moving targets by a moving bistatic pulsed Doppler radar system is addressed. Optimum clutter rejection is achieved using space-time adaptive processing (STAP). This requires estimating the clutter-plus-noise covariance matrix using a sequence of snapshots at successive ranges. For most monostatic and for all bistatic radar configurations, these snapshots are rangedependant. The estimator is then biased and not accurate. A compensation method originally developped for the monostatic case is applied to selected bistatic configurations and its performance assessed in these new conditions
Principle and Evaluation of a Registration-Based Range-Dependence Compensation Method for Stap in Case of Arbitrary Antenna Patterns and Simulated Snapshots
We propose a new method for estimating the clutter power spectrum locus in arbitrary STAP radar configurations, i.e., both monostatic and bistatic. This locus is a surface in the 3D space of spatial frequency, Doppler frequency and range. Based on the knowledge of this locus, one can perform a range dependence compensation of the snapshots to obtain an estimate of the clutter covariance matrix. The method is designed to work with omnidirectional or directional transmit and receive antenna patterns and with single-realization random snapshots. End-to-end simulations show that the method provides good results
- …