4,429 research outputs found

    Torus partition functions and spectra of gauged linear sigma models

    Full text link
    Worldsheet (0,2) gauged linear sigma models are often used to study supersymmetric heterotic string compactifications with non-trivial vector bundles. We make use of supersymmetric localization techniques to determine their one-loop partition functions. In particular we derive conditions which ensure that the full partition function is modular invariant and we propose a method to determine the massless and massive target space matter spectrum.Comment: 4 pages LaTeX; v2: important technical issue resolved, most results essentially unchange

    Line bundle embeddings for heterotic theories

    Full text link
    In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E8×E8\text{E}_8\times\text{E}_8 or SO(32)\text{SO}(32) for the supersymmetric heterotic string theories and SO(16)×SO(16)\text{SO}(16) \times \text{SO}(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.Comment: 29+1 pages, 7 tables, 1 figure, typos corrected, clarifying remarks and references adde

    Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization

    Full text link
    With the introduction of spectral-domain optical coherence tomography (OCT), resulting in a significant increase in acquisition speed, the fast and accurate segmentation of 3-D OCT scans has become evermore important. This paper presents a novel probabilistic approach, that models the appearance of retinal layers as well as the global shape variations of layer boundaries. Given an OCT scan, the full posterior distribution over segmentations is approximately inferred using a variational method enabling efficient probabilistic inference in terms of computationally tractable model components: Segmenting a full 3-D volume takes around a minute. Accurate segmentations demonstrate the benefit of using global shape regularization: We segmented 35 fovea-centered 3-D volumes with an average unsigned error of 2.46 ±\pm 0.22 {\mu}m as well as 80 normal and 66 glaucomatous 2-D circular scans with errors of 2.92 ±\pm 0.53 {\mu}m and 4.09 ±\pm 0.98 {\mu}m respectively. Furthermore, we utilized the inferred posterior distribution to rate the quality of the segmentation, point out potentially erroneous regions and discriminate normal from pathological scans. No pre- or postprocessing was required and we used the same set of parameters for all data sets, underlining the robustness and out-of-the-box nature of our approach.Comment: Accepted for publication in Medical Image Analysis (MIA), Elsevie

    Unlocking the Potential of Flexible Energy Resources to Help Balance the Power Grid

    Full text link
    Flexible energy resources can help balance the power grid by providing different types of ancillary services. However, the balancing potential of most types of resources is restricted by physical constraints such as the size of their energy buffer, limits on power-ramp rates, or control delays. Using the example of Secondary Frequency Regulation, this paper shows how the flexibility of various resources can be exploited more efficiently by considering multiple resources with complementary physical properties and controlling them in a coordinated way. To this end, optimal adjustable control policies are computed based on robust optimization. Our problem formulation takes into account power ramp-rate constraints explicitly, and accurately models the different timescales and lead times of the energy and reserve markets. Simulations demonstrate that aggregations of select resources can offer significantly more regulation capacity than the resources could provide individually.Comment: arXiv admin note: text overlap with arXiv:1804.0389

    Fast conditional density estimation for quantitative structure-activity relationships

    Get PDF
    Many methods for quantitative structure-activity relationships (QSARs) deliver point estimates only, without quantifying the uncertainty inherent in the prediction. One way to quantify the uncertainy of a QSAR prediction is to predict the conditional density of the activity given the structure instead of a point estimate. If a conditional density estimate is available, it is easy to derive prediction intervals of activities. In this paper, we experimentally evaluate and compare three methods for conditional density estimation for their suitability in QSAR modeling. In contrast to traditional methods for conditional density estimation, they are based on generic machine learning schemes, more specifically, class probability estimators. Our experiments show that a kernel estimator based on class probability estimates from a random forest classifier is highly competitive with Gaussian process regression, while taking only a fraction of the time for training. Therefore, generic machine-learning based methods for conditional density estimation may be a good and fast option for quantifying uncertainty in QSAR modeling.http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/181
    corecore