132 research outputs found

    A General Approach to the Geostationary Transfer Orbit Mission Recovery

    Get PDF
    This paper discusses recovery scenarios for geosynchronous satellites injected in a non-nominal orbit due to a launcher underperformance. The theory on minimum-fuel orbital transfers is applied to develop an operational tool capable to design a recovery mission. To obtain promising initial guesses for the recovery three complementary techniques are used: p-optimized impulse function contouring, a numerical impulse function minimization and the solutions to the switching equations. The tool evaluates the feasibility of a recovery with the on-board propellant of the spacecraft and performs the complete mission design. This design takes into account for various mission operational constraints such as e.g., the requirement of multiple finite-duration burns, third-body orbital perturbations, spacecraft attitude constraints and ground station visibility. In a final case study, we analyze the consequences of a premature breakdown of an upper rocket stage engine during injection on a geostationary transfer orbit, as well as the possible recovery solution with the satellite on-board propellant

    EEG Microstates During Resting Represent Personality Differences

    Get PDF
    We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the ā€˜microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thoughtā€, are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophreni

    The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow

    Full text link
    A brain microstate is characterized by a unique, fixed spatial distribution of electrically active neurons with time varying amplitude. It is hypothesized that a microstate implements a functional/physiological state of the brain during which specific neural computations are performed. Based on this hypothesis, brain electrical activity is modeled as a time sequence of non-overlapping microstates with variable, finite durations (Lehmann and Skrandies 1980, 1984; Lehmann et al 1987). In this study, EEG recordings from 109 participants during eyes closed resting condition are modeled with four microstates. In a first part, a new confirmatory statistics method is introduced for the determination of the cortical distributions of electric neuronal activity that generate each microstate. All microstates have common posterior cingulate generators, while three microstates additionally include activity in the left occipital/parietal, right occipital/parietal, and anterior cingulate cortices. This appears to be a fragmented version of the metabolically (PET/fMRI) computed default mode network (DMN), supporting the notion that these four regions activate sequentially at high time resolution, and that slow metabolic imaging corresponds to a low-pass filtered version. In the second part of this study, the microstate amplitude time series are used as the basis for estimating the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections that are mediated by the microstate transitions. The results show that the posterior cingulate is an important hub, sending alpha and beta oscillatory information to all other microstate generator regions. Interestingly, beyond alpha, beta oscillations are essential in the maintenance of the brain during resting state.Comment: pre-print, technical report, The KEY Institute for Brain-Mind Research (Zurich), Kansai Medical University (Osaka

    Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG "leakage correction"

    Full text link
    The problem of interest here is the study of brain functional and effective connectivity based on non-invasive EEG-MEG inverse solution time series. These signals generally have low spatial resolution, such that an estimated signal at any one site is an instantaneous linear mixture of the true, actual, unobserved signals across all cortical sites. False connectivity can result from analysis of these low-resolution signals. Recent efforts toward "unmixing" have been developed, under the name of "leakage correction". One recent noteworthy approach is that by Colclough et al (2015 NeuroImage, 117:439-448), which forces the inverse solution signals to have zero cross-correlation at lag zero. One goal is to show that Colclough's method produces false human connectomes under very broad conditions. The second major goal is to develop a new solution, that appropriately "unmixes" the inverse solution signals, based on innovations orthogonalization. The new method first fits a multivariate autoregression to the inverse solution signals, giving the mixed innovations. Second, the mixed innovations are orthogonalized. Third, the mixed and orthogonalized innovations allow the estimation of the "unmixing" matrix, which is then finally used to "unmix" the inverse solution signals. It is shown that under very broad conditions, the new method produces proper human connectomes, even when the signals are not generated by an autoregressive model.Comment: preprint, technical report, under license "Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)", https://creativecommons.org/licenses/by-nc-nd/4.0

    First Valence, Then Arousal: The Temporal Dynamics of Brain Electric Activity Evoked by Emotional Stimuli

    Get PDF
    The temporal dynamics of the neural activity that implements the dimensions valence and arousal during processing of emotional stimuli were studied in two multi-channel ERP experiments that used visually presented emotional words (experiment1) and emotional pictures (experiment2) as stimulus material. Thirty-two healthy subjects participated (mean age 26.8Ā±6.4years, 24 women). The stimuli in both experiments were selected on the basis of verbal reports in such a way that we were able to map the temporal dynamics of one dimension while controlling for the other one. Words (pictures) were centrally presented for 450 (600) ms with interstimulus intervals of 1,550 (1,400) ms. ERP microstate analysis of the entire epochs of stimulus presentations parsed the data into sequential steps of information processing. The results revealed that in several microstates of both experiments, processing of pleasant and unpleasant valence (experiment1, microstate #3: 118-162ms, #6: 218-238ms, #7: 238-266ms, #8: 266-294ms; experiment2, microstate #5: 142-178ms, #6: 178-226ms, #7: 226-246ms, #9: 262-302ms, #10: 302-330ms) as well as of low and high arousal (experiment1, microstate #8: 266-294ms, #9: 294-346ms; experiment2, microstate #10: 302-330ms, #15: 562-600ms) involved different neural assemblies. The results revealed also that in both experiments, information about valence was extracted before information about arousal. The last microstate of valence extraction was identical with the first microstate of arousal extractio

    Classes of Multichannel EEG Microstates in Light and Deep Hypnotic Conditions

    Get PDF
    The study assessed the brain electric mechanisms of light and deep hypnotic conditions in the framework of EEG temporal microstates. Multichannel EEG of healthy volunteers during initial resting, light hypnosis, deep hypnosis, and eventual recovery was analyzed into temporal EEG microstates of four classes. Microstates are defined by the spatial configuration of their potential distribution maps (ā€¹potential landscapes') on the head surface. Because different potential landscapes must have been generated by different active neural assemblies, it is reasonable to assume that they also incorporate different brain functions. The observed four microstate classes were very similar to the four standard microstate classes A, B, C, D [Koenig, T. etal. Neuroimage, 2002;16: 41-8] and were labeled correspondingly. We expected a progression of microstate characteristics from initial resting to light to deep hypnosis. But, all three microstate parameters (duration, occurrence/second and %time coverage) yielded values for initial resting and final recovery that were between those of the two hypnotic conditions of light and deep hypnosis. Microstates of the classes B and D showed decreased duration, occurrence/second and %time coverage in deep hypnosis compared to light hypnosis; this was contrary to microstates of classes A and C which showed increased values of all three parameters. Reviewing the available information about microstates in other conditions, the changes from resting to light hypnosis in certain respects are reminiscent of changes to meditation states, and changes to deep hypnosis of those in schizophrenic state

    EEG source imaging during two Qigong meditations

    Get PDF
    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothingā€ and "Qigongā€ were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigongā€ than "Thinking of Nothing,ā€ forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothingā€ than "Qigong,ā€ forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigongā€ showed activation in posterior areas whereas "Thinking of Nothingā€ showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigongā€ and anterior (left) prefrontal areas during "Thinking of Nothingā€ may reflect a predominance of self-reference, attention and input-centered processing in the "Qigongā€ meditation, and of control-centered processing in the "Thinking of Nothingā€ meditatio

    Rivastigmine effects on EEG spectra and three-dimensional LORETA functional imaging in Alzheimer's disease

    Get PDF
    Objective: The objective of the study is to investigate the electrocortical and the global cognitive effects of 3months rivastigmine medication in a group of mild to moderate Alzheimer's disease patients. Materials and methods: Multichannel EEG and cognitive performances measured with the Mini Mental State Examination in a group of 16 patients with mild to moderate Alzheimer's Disease were collected before and 3months after the onset of rivastigmine medication. Results: Spectral analysis of the EEG data showed a significant power decrease in the delta and theta frequency bands during rivastigmine medication, i.e., a shift of the power spectrum towards ā€˜normalization'. Three-dimensional low resolution electromagnetic tomography (LORETA) functional imaging localized rivastigmine effects in a network that includes left fronto-parietal regions, posterior cingulate cortex, bilateral parahippocampal regions, and the hippocampus. Moreover, a correlation analysis between differences in the cognitive performances during the two recordings and LORETA-computed intracortical activity showed, in the alpha1 frequency band, better cognitive performance with increased cortical activity in the left insula. Conclusion: The results point to a ā€˜normalization' of the EEG power spectrum due to medication, and the intracortical localization of these effects showed an increase of cortical activity in frontal, parietal, and temporal regions that are well-known to be affected in Alzheimer's disease. The topographic convergence of the present results with the memory network proposed by Vincent et al. (J. Neurophysiol. 96:3517-3531, 2006) leads to the speculation that in our group of patients, rivastigmine specifically activates brain regions that are involved in memory functions, notably a key symptom in this degenerative diseas

    Meditators and Non-Meditators: EEG Source Imaging During Resting

    Get PDF
    Many meditation exercises aim at increased awareness of ongoing experiences through sustained attention and at detachment, i.e., non-engaging observation of these ongoing experiences by the intent not to analyze, judge or expect anything. Long-term meditation practice is believed to generalize the ability of increased awareness and greater detachment into everyday life. We hypothesized that neuroplasticity effects of meditation (correlates of increased awareness and detachment) would be detectable in a no-task resting state. EEG recorded during resting was compared between Qigong meditators and controls. Using LORETA (low resolution electromagnetic tomography) to compute the intracerebral source locations, differences in brain activations between groups were found in the inhibitory delta EEG frequency band. In the meditators, appraisal systems were inhibited, while brain areas involved in the detection and integration of internal and external sensory information showed increased activation. This suggests that neuroplasticity effects of long-term meditation practice, subjectively described as increased awareness and greater detachment, are carried over into non-meditating state
    • ā€¦
    corecore