1,856 research outputs found

    Exploring the Effects of Climate-Adaptive Building Shells: An Applicative Time-Saving Algorithm on a Case Study in Bologna, Italy

    Get PDF
    Adaptive façades represent a viable and effective technological solution to reduce the building energy demand for cooling while achieving interesting aesthetic effects on the building envelope to screen solar radiation. During the last decade, many different design solutions, including those based on shape memory alloys, have been experimented to obtain appropriate responses without being dependent on electro-mechanically actuated systems. Several recent and ongoing studies have been published in the scientific literature regarding the different actuator typologies, as well as the different properties of the materials used, which usually determine the adaptive solution characteristics after a series of complex and time-consuming simulations using specialised dy-namic modelling software. Due to the time and resources required, this kind of evaluation is usually delivered during the last and more advanced design stage as a form of assessment of al-ready-taken architectural and technological choices. The study reported in the paper aims to offer a quick, time-saving simplified algorithm to calculate the response of an adaptive façade, ac-cording to the ISO 13790 standards, to be adopted during the early design stage to evaluate the possible effects of design decisions. The study includes three main steps: (a) the conceptualisation of the adaptive solution considering the context conditions; (b) the definition of the calculation algorithm; (c) the application of the method to a test room in a case study building located in Bologna for supporting the discussion of the related outcomes

    A Study on Parametric Design Application to Hospital Retrofitting for Improving Energy Savings and Comfort Conditions

    Get PDF
    The scientific literature offers a wide range of studies evidencing the progress done in the retrofit actions dealing with the current building stock; however, renovations of hospitals are still an open field of research due to their typical complexity that is usually associated with a very challenging updating processes to maintain or increase operational level. The paper provides a synthesis of a study developed by a team of the Department of Architecture for Saint Orsola Hospital in Bologna with the scope to explore innovative retrofitting strategies. The brief provided by the management unit of the hospital was connected to the general renovation plan involving the entire site and particularly some existing buildings taking into account some limitations concerning budget availabilities and everyday activities needed to ensure acceptable service level for the end users. The design approach starts from defining a basic unit (a typical hospital room) that is deeply analyzed to report the starting conditions (indoor environmental parameters) and then used to simulate the potential impacts of retrofitting actions on its performances. The results allowed to parametrically develop a step by step strategy scaled on each building sector and on the building as a whole to evaluate the global impact on energy performances while considering time and costs of each retrofitting options

    Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence

    Get PDF
    Despite studies on thermal comfort being consolidated in the scientific literature, people\u2019s well-being in some specific conditions and places, such as hospitals, requires to be further explored. The paper describes the methodological approach adopted to evaluate thermal comfort level and perception of pregnant women hosted in the obstetric ward of a test-bed case (Sant\u2019Orsola hospital in Bologna, Italy). The methodology adopts a mixed approach that compares the results of on-site monitoring by probe (as quantitative data) with the ones of a survey (questionnaire form) delivered to the involved subjects (as qualitative data) to understand if metabolic alteration may influence the pregnant women\u2019s perception of comfort conditions. The first follows ISO 7730, the second, ISO 10551. The comparison between the instrumental collected data and the outcomes of the survey revealed a wide gap between TSV (Thermal Sensation Vote) and PMVm (Predicted Mean Vote, measured on-site). The reason can be identified in the use of a standardized metabolic unit from ISO that does not correctly reflect the physiologic condition of pregnant women. Following a trial and error methodology, a met value for pregnant women is accordingly proposed. Moreover, an adaptive thermal comfort approach is adopted. This research is a first step towards the definition of specific thermal comfort in a hospital ward hosting pregnant women and more generally offers a reflection about the need to define specific met in the standards for some particular categories (children, elderly, pregnant women, etc.) when investigating thermal comfort

    Climate Change Effect on Building Performance: A Case Study in New York

    Get PDF
    The evidences of the influence of climate change (CC) in most of the key sectors of human activities are frequently reported by the news and media with increasing concern. The building sector, and particularly energy use in the residential sector, represents a crucial field of investigation as demonstrated by specific scientific literature. The paper reports a study on building energy consumption and the related effect on indoor thermal comfort considering the impacts of the Intergovernmental Panel on Climate Change (IPCC) 2018 report about temperature increase projection. The research includes a case study in New York City, assuming three different scenarios. The outcomes evidence a decrease in energy demand for heating and an increase in energy demand for cooling, with a relevant shift due to the summer period temperature variations. The challenge of the last decades for sustainable design was to increase insulation for improving thermal behavior, highly reducing the energy demand during winter time, however, the projections over the next decades suggest that the summer regime will represent a future and major challenge in order to reduce overheating and ensure comfortable (or at least acceptable) living conditions inside buildings. The growing request of energy for cooling is generating increasing pressure on the supply system with peaks in the case of extreme events that lead to the grid collapse and to massive blackouts in several cities. This is usually tackled by strengthening the energy infrastructure, however, the users\u2019 behavior and lifestyle will strongly influence the system capacity in stress conditions. This study focuses on the understanding of these phenomena and particularly on the relevance of the users\u2019 perception of indoor comfort, assuming the IPCC projections as the basis for a future scenario

    In-out versus out-in technique for ACL reconstruction. a prospective clinical and radiological comparison

    Get PDF
    Background: Several studies have recently shown better restoration of normal knee kinematics and improvement of rotator knee stability after reconstruction with higher femoral tunnel obliquity. The aim of this study is to evaluate tunnel obliquity, length, and posterior wall blowout in single-bundle anterior cruciate ligament (ACL) reconstruction, comparing the transtibial (TT) technique and the out–in (OI) technique. Materials and methods: Forty consecutive patients operated on for ACL reconstruction with hamstrings were randomly divided into two groups: group A underwent a TT technique, while group B underwent an OI technique. At mean follow-up of 10 months, clinical results and obliquity, length, and posterior wall blowout of femoral tunnels in sagittal and coronal planes using computed tomography (CT) scan were assessed. Results: In sagittal plane, femoral tunnel obliquity was 38.6 ± 10.2° in group A and 36.6 ± 11.8° in group B (p = 0.63). In coronal plane, femoral tunnel obliquity was 57.8 ± 5.8° in group A and 35.8 ± 8.2° in group B (p = 0.009). Mean tunnel length was 40.3 ± 1.2 mm in group A and 32.9 ± 2.3 mm in group B (p = 0.01). No cases of posterior wall compromise were observed in any patient of either group. Clinical results were not significantly different between the two groups. Conclusions: The OI technique provides greater obliquity of the femoral tunnel in coronal plane, along with satisfactory length of the tunnel and lack of posterior wall compromise. Level of evidence: II, prospective study

    The Role of Architectural Skin Emissivity Influencing Outdoor Microclimatic Comfort: A Case Study in Bologna, Italy

    Get PDF
    This article examines the influence of the emissivity of façade materials on outdoor microclimat-ic comfort. The developed methodology is based on the collection of input data regarding the site, the geometrical and technological characterization of the building envelope and the defini-tion of the associated emissivity, the development of alternative emissivity-driven scenarios, the scenario simulation to obtain Outdoor Microclimate Maps (OMMs), and their interpretation and discussion. The operative steps of the proposed simplified method are applied to a specific case study in the city of Bologna made of a mix of buildings, including some towers overlooking an inner courtyard. The emissivity of the façade materials is assumed as the main variable. The re-sults show how, by properly addressing the design choices, it is possible to achieve significant improvements in the outdoor microclimate for the space in-between the considered volumes

    Exploring the Role of Building Envelope in Reducing Energy Poverty Risk: A Case Study on Italian Social Housing

    Get PDF
    Energy poverty is a significant social, economic, and health issue which increasingly affects millions of households worldwide. Both climate change and the socio-economic crisis have aggravated this phenomenon, making families unable to keep adequate comfort conditions at home because of economic constraints and/or dwelling inefficiencies. Considering the recent inflation trends, as well as the global effort to reduce the building sector’s carbon emissions, energy retrofitting of buildings emerges as the most forward-looking strategy to cope with energy poverty risk. In the case of large building stocks, which are typical for social housing complexes across the EU, deep and fast energy retrofitting might prove challenging, especially considering the resource shortages and disruptions to occupants that may arise. Therefore, this article investigates the relationship between the envelope’s insulation ratio and the risk of energy poverty for households. To this end, diverse scenarios are defined, corresponding to progressive increases in the percentage of building envelope that is insulated. The resulting energy needs are calculated for each of them and correlated with local average incomes and relative energy expenses of households. This is tested on an Italian social housing demo case. The results confirm a predictable but not linear correlation between thermal insulation and reduced energy needs for heating, and an interesting side effect on cooling needs for scenarios that perform better in winter. As for income, energy cost has a greater effect on the energy poverty risk when monthly rent is lower, while energy prices have a major role when rent per month is higher

    Outdoor Comfort: The ENVI-BUG tool to Evaluate PMV Values Output Comfort Point by Point

    Get PDF
    Abstract Studies on Outdoor Comfort in urban open spaces adopt several tools and software to simulate microclimate models, energy performances and the fluid-dynamics of winds. Air temperature, wind speed, relative humidity are the typical input data used by the software to evaluate comfort indexes such as the Predicted Mean Vote [PMV], the Physiological Effective Temperature [PET] or the Universal Thermal Climate Index [UTCI]. Among the available software, Envi-met provides accurate outputs as well as the PMV index space distribution starting from a three-dimensional microclimate model. However it is affected by some limitations for what concerns a user centered approach including the changes in human metabolic activity (met) or clothes (clo). This paper offers a synthesis of a study performed on ENVI-BUG, an Envi-met algorithmic app, to obtain a fast calculation and distribution of local PMV point-by-point displayed with mannequin representation

    A Study on the Use of Outdoor Microclimate Map to Address Design Solutions for Urban Regeneration

    Get PDF
    Abstract Climate change and the deriving impacts on the built environment certainly represent one of the most challenging issue for several key players involved in shaping the cities of tomorrow. This is not simply a matter of adapting buildings to new requirements, but rather to rethink the way the urban fabric reacts to new and sometimes unpredictable phenomena. The process is related to increasingly evident extreme conditions in the summer time, that strongly improve the energy demand for cooling with negative impacts on the energy balance as well as on thermal comfort conditions of the end users and of urban population with severe implication on health and wellbeing. Outdoor comfort depends on a number of inter-related factors: the characteristics of the built environment, the relationship between materials and energy use, global climate change and local micro-climate: Temperature, Solar Radiation, Wind distribution, Wind Speed, Absolute and Relative Humidity. The objective of this specific study is to test the microclimate modeling of a city portion in a demo-case – a plot of building blocks with inner courtyards – as a tool for supporting the regeneration phase addressing technological choices and design solutions to improve outdoor comfort conditions. The outcomes of the performed envi-MET simulations, comparing the situation before and after intervention, are consequently discussed. In the specific case, the developed project involving the courtyard has led the Thermal Comfort perception, evaluated in terms of PMV, to shift from "very hot" (+3.50, +4.00 red zone) and "very very hot" (above + 4.50 violet zone) to "Warm" (+1.50, +2.00) at urban plot scale
    • …
    corecore