30,056 research outputs found

    Scaling dependence on time and distance in nonlinear fractional diffusion equations and possible applications to the water transport in soils

    Full text link
    Recently, fractional derivatives have been employed to analyze various systems in engineering, physics, finance and hidrology. For instance, they have been used to investigate anomalous diffusion processes which are present in different physical systems like: amorphous semicondutors, polymers, composite heterogeneous films and porous media. They have also been used to calculate the heat load intensity change in blast furnace walls, to solve problems of control theory \ and dynamic problems of linear and nonlinear hereditary mechanics of solids. In this work, we investigate the scaling properties related to the nonlinear fractional diffusion equations and indicate the possibilities to the applications of these equations to simulate the water transport in unsaturated soils. Usually, the water transport in soils with anomalous diffusion, the dependence of concentration on time and distance may be expressed in term of a single variable given by λq=x/tq.\lambda _{q}=x/t^{q}. In particular, for q=1/2q=1/2 the systems obey Fick's law and Richards' equation for water transport. We show that a generalization of Richards' equation via fractional approach can incorporate the above property.Comment: 9 page

    Cutting plane methods for general integer programming

    Get PDF
    Integer programming (IP) problems are difficult to solve due to the integer restrictions imposed on them. A technique for solving these problems is the cutting plane method. In this method, linear constraints are added to the associated linear programming (LP) problem until an integer optimal solution is found. These constraints cut off part of the LP solution space but do not eliminate any feasible integer solution. In this report algorithms for solving IP due to Gomory and to Dantzig are presented. Two other cutting plane approaches and two extensions to Gomory's algorithm are also discussed. Although these methods are mathematically elegant they are known to have slow convergence and an explosive storage requirement. As a result cutting planes are generally not computationally successful

    Integro-differential diffusion equation for continuous time random walk

    Full text link
    In this paper we present an integro-differential diffusion equation for continuous time random walk that is valid for a generic waiting time probability density function. Using this equation we also study diffusion behaviors for a couple of specific waiting time probability density functions such as exponential, and a combination of power law and generalized Mittag-Leffler function. We show that for the case of the exponential waiting time probability density function a normal diffusion is generated and the probability density function is Gaussian distribution. In the case of the combination of a power-law and generalized Mittag-Leffler waiting probability density function we obtain the subdiffusive behavior for all the time regions from small to large times, and probability density function is non-Gaussian distribution.Comment: 12 page

    State estimation from pair of conjugate qudits

    Full text link
    We show that, for NN parallel input states, an anti-linear map with respect to a specific basis is essentially a classical operator. We also consider the information contained in phase-conjugate pairs ∣ϕ>∣ϕ∗>|\phi > |\phi^*>, and prove that there is more information about a quantum state encoded in phase-conjugate pairs than in parallel pairs.Comment: 4 pages, 1 tabl

    Patient reactions to a web-based cardiovascular risk calculator in type 2 diabetes: a qualitative study in primary care.

    Get PDF
    Use of risk calculators for specific diseases is increasing, with an underlying assumption that they promote risk reduction as users become better informed and motivated to take preventive action. Empirical data to support this are, however, sparse and contradictory
    • …
    corecore