15 research outputs found
Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data
The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here
Ignition behaviour of different rank coals in an entrained flow reactor
An experimental study to determine the temperature and mechanism of coal ignition was carried out by using an entrained flow reactor (EFR) at relatively high coal feed rates (0.5 g min−1). Seven coals ranging in rank from subbituminous to semianthracite, were tested and the evolved gases (O2, CO, CO2, NO) were measured continuously. The ignition temperature was evaluated from the gas evolution profiles, and it was found to be inversely correlated to the reactivity of the coal, as reflected by the increasing values of the ignition temperature in the sequence: subbituminous, high volatile bituminous, low volatile bituminous and semianthracite coals. The mechanism of ignition varied from a heterogeneous mechanism for subbituminous, low volatile bituminous and semianthracite coals, to a homogeneous mechanism for high volatile bituminous coals. A thermogravimetric analyser (TGA) was also used to evaluate coal ignition behaviour. Both methods, TGA and EFR, were in agreement as regards the mechanism of coal ignition. From the SEM micrographs of the coal particles retrieved from the cyclone, it was possible to observe the external appearance of the particles before, during and after ignition. The micrographs confirmed the mechanism deduced from the gas profiles.Work carried out with the financial support of FONDECYT, Project 2010113 and
MECESUP UCO0108 (Chile) which provided a mobility grant.Peer reviewe
Ignition characteristics of coal blends in an entrained flow furnace
5 pages, 8 figures.-- Printed version published Sep 2007.-- Issue title: "The 6th European Conference on Coal Research and its Applications".Ignition tests were carried out on blends of three coals of different rank – subbituminous, high volatile and low volatile bituminous – in two entrained flow reactors. The ignition temperatures were determined from the gas evolution profiles (CO, CO2, NO, O2), while the mechanism of ignition was elucidated from these profiles and corroborated by high-speed video recording. Under the experimental conditions of high carbon loading, clear interactive effects were observed for all the blends. Ignition of the lower rank coals (subbituminous, high volatile bituminous) enhanced the ignition of the higher rank coal (low volatile bituminous) in the blends. The ignition temperatures of the blends of the low rank coals (subbituminous–high volatile bituminous) were additive. However, for the rest of the blends the ignition temperatures were always closer to the lower rank coal in the blend.Work carried out with the financial support of FONDECYT, Project 2010113 and MECESUP UCO0108 (Chile) which provided a mobility grant.Peer reviewe