39 research outputs found

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Unauthorized Horizontal Spread in the Laboratory Environment: The Tactics of Lula, a Temperate Lambdoid Bacteriophage of Escherichia coli

    Get PDF
    We investigated the characteristics of a lambdoid prophage, nicknamed Lula, contaminating E. coli strains from several sources, that allowed it to spread horizontally in the laboratory environment. We found that new Lula infections are inconspicuous; at the same time, Lula lysogens carry unusually high titers of the phage in their cultures, making them extremely infectious. In addition, Lula prophage interferes with P1 phage development and induces its own lytic development in response to P1 infection, turning P1 transduction into an efficient vehicle of Lula spread. Thus, using Lula prophage as a model, we reveal the following principles of survival and reproduction in the laboratory environment: 1) stealth (via laboratory material commensality), 2) stability (via resistance to specific protocols), 3) infectivity (via covert yet aggressive productivity and laboratory protocol hitchhiking). Lula, which turned out to be identical to bacteriophage phi80, also provides an insight into a surprising persistence of T1-like contamination in BAC libraries

    Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied.</p> <p>Methods</p> <p>The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration.</p> <p>Results</p> <p>The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus.</p> <p>Conclusion</p> <p>Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.</p

    Coenzyme Q10 Reduces Ethanol-Induced Apoptosis in Corneal Fibroblasts

    Get PDF
    Dilute ethanol (EtOH) is a widely used agent to remove the corneal epithelium during the modern refractive surgery. The application of EtOH may cause the underlying corneal fibroblasts to undergo apoptosis. This study was designed to investigate the protective effect and potential mechanism of the respiratory chain coenzyme Q10 (CoQ10), an electron transporter of the mitochondrial respiratory chain and a ubiquitous free radical scavenger, against EtOH-induced apoptosis of corneal fibroblasts. Corneal fibroblasts were pretreated with CoQ10 (10 µM) for 2 h, followed by exposure to different concentrations of EtOH (0.4, 2, 4, and 20%) for 20 s. After indicated incubation period (2–12 h), MTT assay was used to examine cell viability. Treated cells were further assessed by flow cytometry to identify apoptosis. Reactive oxygen species (ROS) and the change in mitochondrial membrane potential were assessed using dichlorodihydrofluorescein diacetate/2′,7′-dichlorofluorescein (DCFH-DA/DCF) assays and flow-cytometric analysis of JC-1 staining, respectively. The activity and expression of caspases 2, 3, 8, and 9 were evaluated with a colorimetric assay and western blot analysis. We found that EtOH treatment significantly decreased the viability of corneal fibroblasts characterized by a higher percentage of apoptotic cells. CoQ10 could antagonize the apoptosis inducing effect of EtOH. The inhibition of cell apoptosis by CoQ10 was significant at 8 and 12 h after EtOH exposure. In EtOH-exposed corneal fibroblasts, CoQ10 pretreatment significantly reduced mitochondrial depolarization and ROS production at 30, 60, 90, and 120 min and inhibited the activation and expression of caspases 2 and 3 at 2 h after EtOH exposure. In summary, pretreatment with CoQ10 can inhibit mitochondrial depolarization, caspase activation, and cell apoptosis. These findings support the proposition that CoQ10 plays an antiapoptotic role in corneal fibroblasts after ethanol exposure

    Microfabrication and characterization of cylinder micropillar array electrodes

    No full text
    This work describes de fabrication, using standard microfabrication techniques, of cylindrical micropillar array electrodes. The work also describes the characterization of these electrodes using a combination of microscopy techniques, cyclic voltammetry and finite-element simulations based on the diffusion domain approach. The work shows that while micropillar array electrodes display currents consistent with the Randles- Ševčík equation at low scan rates, they afford enhanced voltammetric peak currents at higher scan rates. Not only this, but for certain micropillar geometries and densities, simulations predict that a voltammetric peak-to-peak separations below 57 mV due to thin-layer diffusion effects. The results presented in this article are in agreement with recent works by Compton and co-workers on porous and rough electrodes, and provide further evidence of the validity of the diffusion domain approach to predict and interpret mass transport controlled currents at microstructured electrodes. © 2011 Elsevier B.V. All rights reserved

    Infravec2 guidelines for the design and operation of containment level 2 and 3 insectaries in Europe

    Get PDF
    With the current expansion of vector-based research and an increasing number of facilities rearing arthropod vectors and infecting them with pathogens, common measures for containment of arthropods as well as manipulation of pathogens are becoming essential for the design and running of such research facilities to ensure safe work and reproducibility, without compromising experimental feasibility. These guidelines and comments were written by experts of the Infravec2 consortium, a Horizon 2020-funded consortium integrating the most sophisticated European infrastructures for research on arthropod vectors of human and animal diseases. They reflect current good practice across European laboratories with experience of safely handling different mosquito species and the pathogens they transmit. As such, they provide experience-based advice to assess and manage the risks to work safely with mosquitoes and the pathogens they transmit. This document can also form the basis for research with other arthropods, for example, midges, ticks or sandflies, with some modification to reflect specific requirements
    corecore