22 research outputs found

    Lower bumblebee colony reproductive success in agricultural compared with urban environments

    Get PDF
    Urbanization represents a rapidly growing driver of land-use change. While it is clear that urbanization impacts species abundance and diversity, direct effects of urban land use on animal reproductive success are rarely documented. Here, we show that urban land use is linked to long-term colony reproductive output in a key pollinator. We reared colonies from wild-caught bumblebee (Bombus terrestris) queens, placed them at sites characterized by varying degrees of urbanization from inner city to rural farmland and monitored the production of sexual offspring across the entire colony cycle. Our land-use cluster analysis identified three site categories, and this categorization was a strong predictor of colony performance. Crucially, colonies in the two clusters characterized by urban development produced more sexual offspring than those in the cluster dominated by agricultural land. These colonies also reached higher peak size, had more food stores, encountered fewer parasite invasions and survived for longer. Our results show a link between urbanization and bumblebee colony reproductive success, supporting the theory that urban areas provide a refuge for pollinator populations in an otherwise barren agricultural landscape

    Floral sonication is an innate behaviour in bumblebees that can be fine-tuned with experience in manipulating flowers

    Get PDF
    Bumblebees demonstrate an extensive capacity for learning complex motor skills to maximise exploitation of floral rewards. This ability is well studied in nectar collection but its role in pollen foraging is less well understood. Floral sonication is used by bees to extract pollen from some plant species with anthers which must be vibrated (buzzed) to release pollen. Pollen removal is determined by sonication characteristics including frequency and amplitude, and thus the ability to optimise sonication should allow bees to maximise the pollen collection. We investigated the ability of the buff-tailed bumblebee (Bombus terrestris) to modify the frequency and amplitude of their buzzes with increasing experience manipulating flowers of the buzz-pollinated plantSolanum rostratum. We analysed flight and feeding vibrations generated by naïve workers across feeding bouts. Feeding buzzes were of a higher frequency and a lower amplitude than flight buzzes. Both flight and feeding buzzes had reduced amplitudes with increasing number of foraging trips. However, the frequency of their feeding buzzes was reduced significantly more than their flight buzzes as bumblebee workers gained experience manipulating flowers. These results suggest that bumblebees are able to modify the characteristics of their buzzes with experience manipulating buzz-pollinated flowers. We discuss our findings in the context of bumblebee learning, and the current understanding of the optimal sonication characteristics for releasing pollen in buzz-pollinated species. Our results present a tantalising insight into the potential role of learning in floral sonication, paving the way for future research in this area

    Dave Goulson: A sting in the tale

    No full text
    corecore