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Abstract 12 

Urbanisation represents a rapidly growing driver of land-use change. While it is clear that 13 

urbanisation impacts species abundance and diversity, direct effects of urban land-use on animal 14 

reproductive success are rarely documented. Here we show that urban land-use is linked to long-term 15 

colony reproductive output in a key pollinator. We reared colonies from wild-caught bumblebee 16 

(Bombus terrestris) queens, placed them at sites characterised by varying degrees of urbanisation 17 

from inner city to rural farmland, and monitored the production of sexual offspring across the entire 18 

colony cycle. Our land-use cluster analysis identified three site categories, and this categorization was 19 

a strong predictor of colony performance. Crucially, colonies in the two clusters characterized by 20 

urban development produced more sexual offspring than those in the cluster dominated by agricultural 21 

land. These colonies also reached higher peak size, had more food stores, encountered fewer parasite 22 

invasions and survived for longer. Our results show a link between urbanisation and bumblebee 23 

colony reproductive success, supporting the theory that urban areas provide a refuge for pollinator 24 

populations in an otherwise barren agricultural landscape.  25 

Keywords 26 

Urbanisation, Bombus terrestris, reproductive success, land-use, pollinator ecology, bee  27 

Background 28 

We are living in the “Urban Age” (1): over half the world’s human population currently resides in 29 

cities (2) and an estimated three-fold increase in global urban land cover is predicted between 2000 30 

and 2030 (3). Although urbanization has been shown to impact negatively upon species abundance 31 

and diversity for many taxa (4), some groups successfully exploit anthropogenic habitats (5) and there 32 

is evidence to place wild bees among this number. For example, areas subject to urban expansion 33 

have lost fewer pollinator species than agricultural areas over the past 80 years (6) and species 34 

richness has been found to be higher in urban than agricultural areas (7). These community level 35 

studies give reason to view urban environments as a potential refuge within barren agricultural 36 

landscapes, which have been associated with reduced floral resources (8) and exposure to 37 

environmental contaminants (9). Yet, the crucial question of whether land-use directly affects fitness 38 

– the ultimate driver of ecological success and evolutionary change – remains a largely neglected 39 

missing link in the correlations between urbanisation and species abundance in both bees and other 40 

taxa (10-12).  41 

Bumblebees comprise an important part of the pollinator community, but are currently subject to a 42 

multitude of threats that include changes in forage availability associated with land-use change (8) 43 

and pressure from emerging parasites and disease (13). Alteration of floral resources is likely to be an 44 
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important driver of urban effects on bees (14), with cities and towns often offering high floral 45 

abundance and diversity in the form of gardens and parks (15). However, many horticultural plant 46 

varieties are unattractive to bees or invest energy in visual displays at the expense of reward provision 47 

(16), and competition may also affect forage availability: increased popularity of urban beekeeping 48 

has increased honeybee hive densities in urban areas (17), possibly increasing competitive interactions 49 

with wild bees (18). Parasite prevalence has also been linked to urbanisation, with higher parasite 50 

loads in urban areas reported in bumblebees (19, 20). Pesticide use has been identified as a threat to 51 

bees (9) and exposure may vary across degrees of urbanisation (21). In the context of this array of 52 

potentially interacting drivers of urban effects, it is not clear how inhabiting urban areas affects 53 

bumblebee success at the colony level. This is because ethical concerns preclude the release of 54 

reproductive offspring from commercially-obtained bumblebee colonies (24-26), meaning that 55 

previous experiments have studied commercial colonies placed into the field only up to the very 56 

beginning of the period when reproductive offspring begin to emerge. Thus, while there is evidence 57 

that bumblebee colony early weight gain may be enhanced in suburban compared to agricultural areas 58 

based on studies of pre-reproductive colonies (22) (but cf. ref. 26), to date no study has monitored the 59 

critical, extensive reproductive period of the colony life-cycle and thus assessed the effects of 60 

urbanisation on lifetime reproductive success itself.  61 

Here, we addressed this gap by rearing colonies from wild-caught queens to investigate the effect of 62 

urbanisation on life-history and reproductive output in the bumblebee Bombus terrestris audax. Using 63 

locally sourced queens allows ecologically relevant quantification of the impact of land-use on 64 

locally-adapted populations, rather than commercial bees that have been subject to artificial selection 65 

(27) and may differ from locally-adapted natural populations (26). It also overcomes concerns 66 

associated with the use of commercial bees, including negative environmental impacts such as 67 

hybridisation (24), pathogen spillover (25) and competition (26). A crucial outcome is that colonies 68 

can be monitored for their entire reproductive lifetime. We selected 38 sites across central London, its 69 

suburbs and the surrounding agricultural land (Fig. 1a), and categorized each site based on land-use 70 

through cluster analysis of principle components derived from 80 land-use variables. Through 71 

frequent censusing and sampling of colonies placed at these sites, we tracked for the first time the 72 

growth, reproductive output, nutritional status, and parasite prevalence of each colony from eclosion 73 

of the first cohort of workers until the end of the colony life cycle. To our knowledge, this represents 74 

the first experimental study in any taxon to demonstrate a direct relationship between urbanisation and 75 

reproductive success, with previous research typically employing an observational approach (e.g. 11, 76 

28). 77 

 Methods 78 

Bumblebee colonies 79 
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We collected 176 foraging Bombus terrestris audax queens in Windsor Great Park, Surrey, UK during 80 

March and April 2016. Queens were chilled and transported to the lab where they were immediately 81 

screened microscopically for the endoparasites Nosema spp., Apicystis bombi, Sphaerularia bombi 82 

and Crithidia bombi, by collecting faeces in a microcapillary (Baubrand Intramark, Wertheim, 83 

Germany) and examining the sample under x400 magnification. Parasitised queens (n=6) were 84 

excluded from the experiment. Queens were kept in clear acrylic rearing boxes until colony founding 85 

(see Supplementary Methods for rearing protocol), after which they were re-screened and transferred 86 

to a wooden nest box (W 280 x L 320 x D 160mm) with a clear Perspex lid. Our final sample for 87 

placement in the field consisted of 43 colonies. 88 

Field placement 89 

We recruited 114 gardens and farms in South-East England (between central London and 90 

Basingstoke), of which 38 sites were selected across a region spanning inner city to countryside on the 91 

basis of distribution (> 1.5km apart), land-use type representativeness and accessibility (Fig.1a). This 92 

includes a range of urban and rural land-use types typical of Western Europe (29), from Central 93 

Business District, to suburban, to villages and medium-intensity agriculture containing a mixture of 94 

grassland and arable fields. Predominant crop types in the agricultural areas were cereals and brassica 95 

crops. The wide range of urban land types contained within London means that it is representative of a 96 

range of different urban types displayed by smaller cities (30). We placed colonies in the field in 97 

protective plastic field boxes during the first week of May 2016, randomised to land-use type 98 

according to initial colony size (see Supplementary Methods). Colony placement was staggered over 99 

six days, with six or seven sites visited each day during daylight hours (8:00-20:00). Colony 100 

monitoring continued until moribundity (see below), which occurred for the last colony on 11
th
 July.   101 

Data collection 102 

Site visits followed approximately the same order as the colony placement, with each site visited 103 

weekly during the hours of darkness (21:30-4:30) at the same time each week. We recorded the 104 

following data (see Supplementary Methods for additional data): number of bees (average of three 105 

counts); queen status (alive, dead or absent); presence of nectar and pollen stores and presence and 106 

status of Bombus vestalis brood parasites (alive, injured or dead), which we removed to minimise B. 107 

terrestris queen death. To assess reproductive success, gynes were removed until one minute had 108 

passed with no gyne seen, and stored for later analysis. The same procedure was repeated for males, 109 

with sampling time capped at 15 minutes. Males are considered to leave the nest at two to four days 110 

old and gynes at two to eight days old (31) so our weekly removal of males and gynes reflects natural 111 

conditions and is unlikely to have impacted the colony’s production of future males and gynes. 112 

Weekly removal of reproductives allows calculation of total reproductive output over the colony life 113 

cycle rather than a snapshot as obtained from traditional colony dissection methods that are carried 114 
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out at the earliest sign of reproductive emergence (22). We removed one, three or five workers for 115 

later parasite analysis depending on colony size (<35, 35-50, >50 workers respectively), which were 116 

stored alive in vials for a maximum of 5 hours before freezing at -20°C. 117 

For the first two weeks, colonies in which the queen died (n=5 of 43; 1 city, 1 village, 3 agricultural) 118 

were replaced with new colonies. Following this, colonies were removed from the field when 119 

moribund, defined as <10 workers remaining and queen death or <3 workers remaining with no queen 120 

death. Remaining workers were frozen at – 20°C and dissected (see below). We obtained daily data 121 

for average temperature, average humidity and total rainfall for each site by downloading data from 122 

the weather station nearest each site that had data for the full study period (www.wunderground.com).  123 

Sample analysis 124 

Up to three workers per colony per week were dissected. For each bee, the abdomen was placed in 125 

Ringer’s solution and examined for the presence of conopid fly and braconid wasp larvae and the 126 

larger tracheae for the tracheal mite Locustacarus buchneri. Sections of the Malpighian tubules, 127 

hindgut and fat body were removed, crushed and examined under x400 magnification for the presence 128 

of the endoparasites Crithidia bombi, Nosema spp. and Apicystis bombi. Each slide was examined by 129 

two researchers. In addition, the ovary development of all collected workers (n=393) and the body fat 130 

content of all workers, gynes (n=46), and a random sample of max. 20 males per colony to limit 131 

workload (total n=418) were assessed (see Supplementary Methods). 132 

Land-use classification 133 

Following best practice in the field (32, 33) we classified land-use at multiple radii surrounding each 134 

site using GIS analysis, based on satellite imagery with additional ground-truthing for agricultural 135 

sites.Agricultural sites were surveyed because mass crop blooms may not be detected by satellite 136 

images taken outside the bloom period The land-use classification protocol is described in full in (37) 137 

and is available as Supplementary Methods. Briefly, buffers at radii of 750m (B. terrestris typical 138 

foraging range (34-36)), 500m, 250m and 100m (representing steps of spatial scales at which bees 139 

may interact with the surrounding land (12, 37)) were generated around each site. Preliminary 140 

analysis showed that the majority of the response variables responded most strongly to land-use at a 141 

500m radius so this was selected as our primary land-use variable. Land-use patches were defined by 142 

drawing polygons in QGIS v2.16 and categorised visually to one of 80 land-use classes (Table S14) 143 

from satellite imagery and ground surveys carried out in May 2016. 144 

We refined the classification to produce a single categorical land-use variable via an established three-145 

step process (32): 1) definition of land-use categories, 2) Principle Components Analysis (PCA) on 146 

the categories and 3) cluster analysis based on the PCA output (Fig. S2). Briefly, each land-use class 147 

was coded to one of eight categories (e.g. impervious surface, flower-rich habitat; Table S14) and the 148 
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total area of each category within each site calculated. A PCA was then performed to reduce the 149 

dimensionality of the land-use variables, and cluster analysis (Ward’s method) was performed on the 150 

first two principle components, which in combination captured approximately 85% of the variation 151 

(see below for loadings). Following (32, 33, 38), each cluster contained a minimum of five sites. 152 

Three clear clusters emerged (Fig. S3a), comprising a group characterised by dense urban 153 

development (henceforth named “city”; n=17), a group characterised by patches of housing 154 

surrounded by rural land (“village”; n=16) and a group dominated by agricultural fields 155 

(“agricultural”; n=5; Fig. 1b). Exploration of model fit confirmed that use of the clustered land-use 156 

categories to predict our main response variables explained more of the variance in our data than use 157 

of the PCs alone (Fig S3b), and comparison of models containing combinations of the PCs with those 158 

containing the clustered variable showed that for all response variables the clustered variable 159 

improved model fit (see Supplementary Methods and Table S11 for AIC values), justifying the 160 

necessity of the clustering step. Sites in the city cluster contained mean 56.2% (± SE: 4.0%) 161 

impervious surface and 0.1 (±0.1)% agricultural land cover while village and agricultural sites 162 

contained 13.8 (±3.7)% and 8.6 (±4.5)% impervious surface and 34.6 (±7.1)% and 71.2 (±11.5)% 163 

agricultural land cover respectively.  164 

Statistical analysis 165 

For each analysis, we built a comparison set of models including the full model (for predictors, see 166 

below) and all subsets, including the basic model containing only the constant and residual variance 167 

(“all-subset approach”). We selected the model or set of models with the lowest AICc as the best 168 

fitting model(s) (39). Where several models were within two AICc units of the best model, model 169 

averaging was carried out to obtain parameter estimates derived from the best set of models including 170 

the basic model if applicable (40). Final models were examined for spatial autocorrelation by using a 171 

Moran’s I test on the residuals and graphically assessing the spatial pattern of residuals. 172 

To analyse peak colony size linear regression was carried out on log-transformed data. Total 173 

production of sexuals (gynes and males) was analysed using zero-altered negative binomial hurdle 174 

models, where the response is modelled as a binary process (production of sexuals) and a zero-175 

truncated count process (total sexuals in colonies that produced sexuals) (41). Binomial GAMs 176 

(allowing for a non-linear effect of week) with site as a random effect were used to analyse presence 177 

of nectar and pollen and ovary development. Queen survival, colony survival and onset of 178 

reproduction were subjected to survival analyses using non-parametric Cox proportional hazards 179 

models. Proportion of worker samples in each colony containing Apicystis and Crithidia were 180 

analysed using binomial GLMs. Male and worker fat content were analysed using Gaussian GAMs 181 

allowing for a non-linear effect of week with site as a random effect. Bombus vestalis invasion as a 182 

binary response was modelled using binomial GLMs. One factor level (city) for this variable had 183 
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perfect separation (only zeroes); to deal with this three dummy observations were added for each 184 

land-use category with B. vestalis invasion set to one and weather variables set to whole-dataset 185 

means.  186 

To investigate whether our results may have been driven by floral resource availability, we re-187 

analysed the response variables that were found to be significantly affected by land-use (reproductive 188 

output, peak colony size, colony survival, queen survival, presence of nectar stores and presence of 189 

pollen stores) using proportion of flower-rich habitat as a predictor. We coded each land-use class as 190 

described above as flower-rich or flower-poor, based on reference to the literature (e.g. domestic 191 

gardens have been shown to support high floral diversity (15) and provide considerable resources to 192 

bees (42)) and on ground surveys in agricultural land to identify crop types and wildflower strips, and 193 

summed the area of flower-rich land-use patches to generate the proportion of flower-rich habitat at a 194 

500m radius for each site. Each response variable was analysed using this predictor as described in the 195 

paragraph above. All analyses were conducted in R version 3.2.1 (43); for packages see 196 

Supplementary Methods.  197 

Results  198 

Land-use category strongly predicted the number of live sexual offspring (gynes and males) produced 199 

over the colony life cycle (Fig. 2a, Table S1a). Village colonies were significantly more likely to 200 

produce sexual offspring than agricultural colonies (model averaged estimate (MAE): 2.853, 95% 201 

CIs: [0.327 – 5.378], Table S2a), and both city (MAE: 2.789 [0.799 – 4.778]) and village (MAE: 202 

2.566 [0.579 – 4.552]) colonies produced significantly higher numbers of sexuals than their 203 

agricultural counterparts. Our data suggest that this effect may reflect both the build-up of a larger 204 

workforce and, relatedly, longer queen lifespans in village and city colonies. Both village and city 205 

colonies displayed significantly higher peak size (number of bees) than agricultural colonies (Table 206 

S1b, Fig. 2b; City MAE: 0.918 [0.194 – 1.641], village MAE: 1.047 [0.319 – 1.774], Table S2b), and 207 

founding queens survived for longer (Table S1c, S2c; Fig. 3a; MAE of Hazard Ratios (HR) relative to 208 

agricultural colonies: City: 0.149 [0.041 – 0.542]); Village: 0.137 [0.039 – 0.488]. City and village 209 

colonies also took significantly longer to become moribund than agricultural colonies (City HR: 0.111 210 

[0.031 – 0.396], village HR: 0.073 [0.019 – 0.271]; Table S1d; Fig. 3b). There was no significant 211 

effect of land-use on ovary development (see Supplementary Results). 212 

Agricultural colonies were found to contain less stored food than their city or village equivalents. 213 

Colonies in city (nectar MAE: 2.015 [0.520 – 3.509], Table S1f, S2f; pollen MAE: 2.109 [1.045 – 214 

3.173], Table S1g, S2g) and village (nectar MAE: 1.902 [0.410 – 3.394]; pollen MAE: 2.038 [0.973 – 215 

3.102]) land-use clusters were significantly more likely to contain nectar (Fig. 4a) and pollen (Fig. 4b) 216 

stores than agricultural colonies, in which we found almost no nectar stores and limited pollen after 217 
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four weeks of development. We found no effect of land-use on the fat content of workers or males 218 

(Tables S5b & c). 219 

Land-use had no effect on the prevalence of Apicystis bombi in colonies, although further analysis 220 

suggested that land-use in the immediate area surrounding the colony may have an effect (see 221 

supplementary results, Table S5g). Similarly, there was no effect of land-use on Crithidia bombi 222 

presence (Table S5f). Only three bees were parasitised by Syntretus sp. (one city site and one village 223 

site), and no Nosema bombi or Locustacaris buchneri was found in any of our samples. The brood 224 

parasite Bombus vestalis was present in our study area, and hence we carefully monitored colonies to 225 

detect attempted parasite invasions. We recorded 14 invasion attempts by B. vestalis queens (max. 4 226 

in a single colony). Land-use category was a significant predictor of the probability of an invasion 227 

attempt (Table S2h), with city (MAE: -3.776 [-6.304 – -1.249]) and village (MAE: -2.943 [-5.444 – -228 

0.442]) colonies being less likely to be invaded than agricultural colonies (Table S2h, Fig. 3c). 229 

Accordingly, we investigated the possibility that increased brood parasite invasions explain the poorer 230 

development of colonies in agricultural sites by performing a separate analysis in which three models 231 

were compared for each response variable: 1) the best model from the original analysis, 2) the same 232 

model but with parasite invasion events replacing land-use as a predictor and 3) a model with both 233 

parasite invasion and land-use. For all variables, the model containing land-use only or land-use and 234 

invasions fit the data better than the model containing invasions alone (i.e. had a lower AICc value, 235 

Table S9). In other words, although parasite invasions explain some of the variance in our data, land-236 

use influences colony performance irrespective of invasion status.  237 

Our land classification protocol (44) allows investigation into the aspects of the land-use that may 238 

underlie the effects found, by examining the variables that contribute to the clustering of land-use 239 

types. High domestic infrastructure, impervious surface and road cover, and low agricultural land 240 

cover, contributed strongly to Principle Component (PC) 1 (eigenvalue score >0.4 or >-0.4 (45)), 241 

while PC2 was defined by high tree cover and low open and flower-rich habitat cover (Table S10). 242 

The city cluster was characterised by positive scores on PC1 (mean 2.00 ± SE 0.07) and near-zero 243 

scores on PC2 (-0.27±0.17), suggesting a highly urbanised semi-open land type; the village cluster 244 

had medium negative scores on PC1 (-1.40±0.37) and positive PC2 scores (0.94±0.37), suggesting 245 

low intensity urbanisation with moderate tree cover; the agricultural cluster had low PC1 scores (-246 

2.33±0.64) and low PC2 scores (-2.08±0.32), suggesting open land with very little urbanisation and 247 

high agricultural cover (Fig. S3a). Analysis of the PCs suggested it was the combination of both 248 

attributes of the land-use that drove the effects seen (see Supplementary Methods and Table S12 & 249 

S13 for results of these analyses). Investigation of the effect of the proportion of flower-rich habitat 250 

on the response variables as a possible key driver of the results showed no significant effect 251 

(Supplementary methods; Tables S3 & S4). 252 
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Discussion 253 

Our results demonstrate a direct association between urbanisation and higher reproductive output in a 254 

key insect pollinator, B. terrestris.  We found increases in reproductive output, colony growth and 255 

food stores as well as lower brood parasitism by B. vestalis in colonies placed in urbanised areas 256 

compared to sites dominated by agriculture. Previous research has described correlative evidence for 257 

higher abundance of bees (e.g. 46) and higher bumblebee nest densities (42, 47) in urban areas, but 258 

whether this may be driven by migration between land-use types or effects of land-use on population 259 

dynamics has remained unclear (48). Our experimental design, whereby colonies reared from wild-260 

caught queens were placed in different land-use types over the full colony life cycle in order to 261 

measure reproductive output, provides evidence for a causal link between reproductive success and 262 

urbanisation, elucidating a potential mechanism behind these observed differences in pollinator 263 

populations between urban and rural areas. Our use of colonies established from locally-sourced 264 

queens gives our findings direct ecological relevance to the impacts of land-use change on wild 265 

bumblebee populations. 266 

We employed a high-resolution approach to measuring reproduction, collecting almost all males and 267 

gynes present in the nest at weekly night-time inspections, over the entire colony life cycle from first 268 

worker emergence to moribundity. This builds on traditional methods of dissecting nests at the very 269 

onset of reproduction (22, 49, 50), capturing a higher proportion of the total reproductive output and 270 

allowing worker and male production to be distinguished (10), which may explain our detection of a 271 

strong effect of urban land-use on reproduction in contrast to previous studies (22, 23, 51). 272 

Furthermore, consideration of asymmetrical reproductive investment in gynes and males means our 273 

results are potentially conservative. Gyne production requires greater resource investment than male 274 

production (52), and in our study, agricultural colonies failed to produce even a single gyne. Gyne 275 

production is likely to have a particularly strong effect on population dynamics, as queens hibernate 276 

and found new colonies (53), so our findings suggest that agricultural populations may not be self-277 

sustaining (54). Queens of common bumblebee species may migrate long distances (55), raising the 278 

possibility that cities may act as a source of new queens to replenish such agricultural population 279 

sinks and therefore support the pollination of crops in agriculturally intense landscapes.  280 

Parasite pressure presents a significant emerging threat to wild bee populations (13) and previous 281 

research has provided evidence for a link between land-use and parasite prevalence in bumblebees 282 

(19, 20). However, no effect of land-use was found on Crithidia bombi presence and levels of Nosema 283 

bombi, Syntretus sp. and Locustacaris buchneri were either zero or too low for analysis.  Conversely, 284 

invasions by the brood parasite B. vestalis were strongly affected by land-use, with higher invasion 285 

rates in agricultural and village colonies than city. This may reflect lower B. vestalis abundance or 286 

even complete absence in the urban areas studied, although surveys have recorded the species in cities 287 
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(e.g. 56). Alternatively, stronger colonies in city sites may have been more able to resist invasion (57), 288 

or volatiles from colonies may have been masked by air pollution (58), rendering them more difficult 289 

to locate (59). Reductions in forage availability in modern agricultural landscapes have been 290 

identified as a potential major driver of bee population declines (8). Accordingly, we found less stored 291 

pollen and nectar in agricultural colonies than in city or village colonies, suggesting forage 292 

availability may be a contributing factor to poor performance at agricultural sites. This is consistent 293 

with evidence from honeybees, where urbanisation has been shown to have a positive effect on food 294 

storage (60) (but cf. ref. 38), and supports research suggesting modern agricultural land provides 295 

insufficient forage resources for bees  (8) 296 

Investigation into the underlying attributes of our land-use classification indicates that it appears to be 297 

the shared attributes of high agricultural cover and low urbanisation that group the poor performing 298 

colonies in our study. A reasonable hypothesis from previous research showing higher colony weight 299 

gain in suburban areas than agricultural (22) would be that low intensity urban areas are most valuable 300 

to bee populations due to the combination of abundant gardens and proximity to semi-natural habitat; 301 

our finding that colonies in densely urbanised areas performed similarly to those in lower intensity 302 

urbanisation nonetheless fails to support this. We found no direct effect of the proportion of flower-303 

rich habitat surrounding colonies on colony success. However, this may reflect the fact that fine 304 

resolution floral abundance surveys, taking into account floral density and species identity, are not 305 

possible in urban areas due to access restrictions to gardens. Future research could aim to investigate 306 

forage provision in urban areas using modelling approaches (62) to further assess floral availability as 307 

a driver in urban habitats. Floral factors differing between agricultural and built-up areas that may 308 

have contributed to a reduced ability to collect food may include the spatial distribution and 309 

composition of flower-rich patches (16, 63), the duration for which they are available (63), or 310 

potential effects of environmental contaminants on foraging behaviour (64).  311 

Exposure to agrochemicals has been shown to impact on colony function and success in bumblebees 312 

(50, 64), including reproductive output (50) and parasite prevalence (65), and high levels of pesticide 313 

contamination are often found in both crop and wildflower resources in agricultural areas (66). There 314 

is evidence that bees in urban areas may be subject to lower pesticide exposure (21, but cf. ref. 67) 315 

offering another possible mechanism for our findings of lower colony success in agricultural areas. 316 

Ground surveys of the agricultural sites in this experiment showed a variety of crops in the 317 

surrounding farmland, with one site near a field of oilseed rape. This may represent a route of 318 

pesticide exposure (68), although the study took place after the EU moratorium restricting 319 

neonicotinoid use in flowering crops (69). However, neonicotinoids may remain in the soil and the 320 

nectar and pollen of non-target plants for prolonged periods following use on nearby crops (70), and 321 

other pesticides may also negatively affect bees (64). In general, fields around the agricultural sites 322 

were more commonly arable than pasture, compared to the village sites which more often contained 323 
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pasture and woodland in undeveloped areas, providing the potential for different pesticide exposure 324 

between these land-use types, and the high incidence of gardens and parks in city areas may expose 325 

bees to a different suite of horticultural pesticide applications, about which little is known (70). Our 326 

findings highlight that the question of how bee exposure to pesticides varies with urbanisation is a 327 

major knowledge gap that requires exploration. 328 

We show for the first time that the reproductive output of B. terrestris  colonies placed in built-up 329 

areas is higher than in agricultural areas, suggesting that the current urban expansion may have 330 

positive consequences for generalist bumblebee species. Our findings suggest that abundance and 331 

diversity differences found in previous studies (71) may be driven by a direct impact of land-use on  332 

fitness, rather than migration between land-use types, and support the growing evidence that some 333 

types of agricultural land represent a barren landscape for pollinators (8, 12).  Given than agricultural 334 

land is the most common primary land-use in Europe (72), our finding that urban areas are linked to 335 

higher reproductive success suggests that developed land may provide a refuge for bumblebee 336 

populations within a landscape dominated by intensive farming. 337 
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Figure 1. a) Location of 38 sites in South-East England at which a B. terrestris colony was placed for up to 10 weeks from 535 

May to July. Inset circles show land-use classification at a 500m radius for three typical sites (left to right: agricultural, 536 

village, city). b) Cluster dendrograms of land-use of 38 sites at a 500m radius. Cluster analyses using Ward’s method were 537 

performed on a set of principle components describing land-use to group sites into categorical land-use types (red boxes). At 538 

the terminus of each branch the two-letter site name is given with an image of the GIS land classification (see Table S14 for 539 

colour key). 540 

Figure 2. a) Mean number of sexual offspring (gynes + males) with 95% confidence intervals (CIs) for colonies of 541 

B.terrestris in agricultural, village and city sites based on land-use at a 500m radius. Letters indicate significant differences 542 

between land-use types based on 95% CIs on parameter estimates from both the binomial (presence/absence of sexuals) and 543 

count (number of sexuals produced) components of a zero-inflated hurdle model. b) Mean (± SE) colony size (number of 544 

bees) from weekly night-time bumblebee colony censuses. To analyse peak colony size linear regression was carried out on 545 

log-transformed data. 546 

Figure 3. Kaplan-Meier curves of a) queen survival and b) colony survival for colonies of B.terrestris in agricultural, village 547 

and city sites based on land-use at a 500m radius. Each step in the Kaplan-Meier curves represents the week at which (a) 548 

queens died or (b) colonies were removed from the field; for example, all queens in agricultural sites had died by week 5. c) 549 

Proportion of colonies invaded by Bombus vestalis in agricultural, village and city sites, analysed as a binary response. 550 

Letters indicate significant differences between land-use types based on 95% CIs on model-averaged parameter estimates 551 

from a) and b) Cox proportional hazards models and c) binomial GLMs.  552 

Figure 4. Mean (± SE) proportion of B. terrestris colonies containing a) nectar and b) pollen stores over 10 weeks in 553 

agricultural, village and city sites based on land-use at a 500m radius. Binomial GAMs allowing for a non-linear effect of 554 

week with site as a random effect were used to analyse presence of nectar and pollen. Nectar data were collected from week 555 

3 due to provision of  sucrose during week 1. 556 

 557 
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Figure 1. a) Location of 38 sites in South-East England at which a B. terrestris colony was placed for up to 
10 weeks from May to July. Inset circles show land-use classification at a 500m radius for three typical sites 
(left to right: agricultural, village, city). b) Cluster dendrograms of land-use of 38 sites at a 500m radius. 

Cluster analyses using Ward’s method were performed on a set of principle components describing land-use 
to group sites into categorical land-use types (red boxes). At the terminus of each branch the two-letter site 

name is given with an image of the GIS land classification (see Supplementary Material for colour key).  
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Figure 2. a) Mean number of sexual offspring (gynes + males) with 95% confidence intervals (CIs) for 
colonies of B.terrestris in agricultural, village and city sites based on land-use at a 500m radius. Letters 

indicate significant differences between land-use types based on 95% CIs on parameter estimates from both 

the binomial (presence/absence of sexuals) and count (number of sexuals produced) components of a zero-
inflated hurdle model. b) Mean (± SE) colony size (number of bees) from weekly night-time bumblebee 
colony censuses. To analyse peak colony size linear regression was carried out on log-transformed data.  
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Figure 3. Kaplan-Meier curves of a) queen survival and b) colony survival for colonies of B.terrestris in 
agricultural, village and city sites based on land-use at a 500m radius. Each step in the Kaplan-Meier curves 
represents the week at which (a) queens died or (b) colonies were removed from the field; for example, all 

queens in agricultural sites had died by week 5. c) Proportion of colonies invaded by Bombus vestalis in 
agricultural, village and city sites, analysed as a binary response. Letters indicate significant differences 
between land-use types based on 95% CIs on model-averaged parameter estimates from a) and b) Cox 

proportional hazards models and c) binomial GLMs.  
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Figure 4. Mean (± SE) proportion of B. terrestris colonies containing a) nectar and b) pollen stores over 10 
weeks in agricultural, village and city sites based on land-use at a 500m radius. Binomial GAMs allowing for 
a non-linear effect of week with site as a random effect were used to analyse presence of nectar and pollen. 

Nectar data were collected from week 3 due to provision of  sucrose during week 1.  
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