74 research outputs found

    Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state

    Get PDF
    Background In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology. Methods Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems. Results The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI. Conclusions In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices

    Harnessing hypoxic adaptation to prevent, treat, and repair stroke

    Get PDF
    The brain demands oxygen and glucose to fulfill its roles as the master regulator of body functions as diverse as bladder control and creative thinking. Chemical and electrical transmission in the nervous system is rapidly disrupted in stroke as a result of hypoxia and hypoglycemia. Despite being highly evolved in its architecture, the human brain appears to utilize phylogenetically conserved homeostatic strategies to combat hypoxia and ischemia. Specifically, several converging lines of inquiry have demonstrated that the transcription factor hypoxia-inducible factor-1 (HIF1-1) mediates the activation of a large cassette of genes involved in adaptation to hypoxia in surviving neurons after stroke. Accordingly, pharmacological or molecular approaches that engage hypoxic adaptation at the point of one of its sensors (e.g., inhibition of HIF prolyl 4 hydroxylases) leads to profound sparing of brain tissue and enhanced recovery of function. In this review, we discuss the potential mechanisms that could subserve protective and restorative effects of augmenting hypoxic adaptation in the brain. The strategy appears to involve HIF-dependent and HIF-independent pathways and more than 70 genes and proteins activated transcriptionally and post-transcriptionally that can act at cellular, local, and system levels to compensate for oxygen insufficiency. The breadth and depth of this homeostatic program offers a hopeful alternative to the current pessimism towards stroke therapeutics
    corecore