78 research outputs found

    Frame dragging with optical vortices

    Get PDF
    General Relativistic calculations in the linear regime have been made for electromagnetic beams of radiation known as optical vortices. These exotic beams of light carry a physical quantity known as optical orbital angular momentum (OAM). It is found that when a massive spinning neutral particle is placed along the optical axis, a phenomenon known as inertial frame dragging occurs. Our results are compared with those found previously for a ring laser and an order of magnitude estimate of the laser intensity needed for a precession frequency of 1 Hz is given for these "steady" beams of light.Comment: 13 pages, 2 figure

    The Classical Harmonic Vibrations of the Atomic Centers of Mass with Micro Amplitudes and Low Frequencies Monitored by the Entanglement between the Two Two-level Atoms in a Single mode Cavity

    Full text link
    We study the entanglement dynamics of the two two-level atoms coupling with a single-mode polarized cavity field after incorporating the atomic centers of mass classical harmonic vibrations with micro amplitudes and low frequencies. We propose a quantitative vibrant factor to modify the concurrence of the two atoms states. When the vibrant frequencies are very low, we obtain that: (i) the factor depends on the relative vibrant displacements and the initial phases rather than the absolute amplitudes, and reduces the concurrence to three orders of magnitude; (ii) the concurrence increases with the increase of the initial phases; (iii) the frequency of the harmonic vibration can be obtained by measuring the maximal value of the concurrence during a small time. These results indicate that even the extremely weak classical harmonic vibrations can be monitored by the entanglement of quantum states.Comment: 10 pages, 3 figure

    The relativistic Sagnac Effect: two derivations

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter and electromagnetic beams, counter-propagating in a rotating interferometer, is deduced using two different approaches. From one hand, we show that the relativistic law of velocity addition leads to the well known Sagnac time difference, which is the same independently of the physical nature of the interfering beams, evidencing in this way the universality of the effect. Another derivation is based on a formal analogy with the phase shift induced by the magnetic potential for charged particles travelling in a region where a constant vector potential is present: this is the so called Aharonov-Bohm effect. Both derivations are carried out in a fully relativistic context, using a suitable 1+3 splitting that allows us to recognize and define the space where electromagnetic and matter waves propagate: this is an extended 3-space, which we call "relative space". It is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform': the geometry of this space turns out to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also http://digilander.libero.it/solciclo

    Mach's Principle and the Origin of Inertia

    Full text link
    The current status of Mach's principle is discussed within the context of general relativity. The inertial properties of a particle are determined by its mass and spin, since these characterize the irreducible unitary representations of the inhomogeneous Lorentz group. The origin of the inertia of mass and intrinsic spin are discussed and the inertia of intrinsic spin is studied via the coupling of intrinsic spin with rotation. The implications of spin-rotation coupling and the possibility of history dependence and nonlocality in relativistic physics are briefly mentioned.Comment: 14 pages. Dedicated to Carl Brans in honor of his 80th birthday. To appear in the Brans Festschrift; v2: typo corrected, published in: At the Frontier of Spacetime, edited by T. Asselmeyer-Maluga (Springer, 2016), Chapter 10, pp. 177-18

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Gravitational Lensing in Astronomy

    Get PDF
    Deflection of light by gravity was predicted by General Relativity and observationaly confirmed in 1919. In the following decades various aspects of the gravitational lens effect were explored theoretically, among them the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility to determine Hubble's constant with lensing. Only relatively recently gravitational lensing became an observational science after the discovery of the first doubly imaged quasar in 1979. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered since, e.g. giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, or weak gravitational lensing. By now literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, physics of quasars, dark matter in galaxy halos, or galaxy structure.Comment: Review article for "Living Reviews in Relativity", see http://www.livingreviews.org . 41 pages, latex, 22 figures (partly in GIF format due to size constraints). High quality postscript files can be obtained electronically at http://www.aip.de:8080/~jkw/review_figures.htm

    Conservation of energy-momentum of matter as the basis for the gauge theory of gravitation

    Full text link
    According to Yang \& Mills (1954), a {\it conserved} current and a related rigid (`global') symmetry lie at the foundations of gauge theory. When the rigid symmetry is extended to a {\it local} one, a so-called gauge symmetry, a new interaction emerges as gauge potential AA; its field strength is FcurlAF\sim {\rm curl} A. In gravity, the conservation of the energy-momentum current of matter and the rigid translation symmetry in the Minkowski space of special relativity lie at the foundations of a gravitational gauge theory. If the translation invariance is made local, a gravitational potential ϑ\vartheta arises together with its field strength TcurlϑT\sim {\rm curl}\,\vartheta. Thereby the Minkowski space deforms into a Weitzenb\"ock space with nonvanishing torsion TT but vanishing curvature. The corresponding theory is reviewed and its equivalence to general relativity pointed out. Since translations form a subgroup of the Poincar\'e group, the group of motion of special relativity, one ought to straightforwardly extend the gauging of the translations to the gauging of full Poincar\'e group thereby also including the conservation law of the {\it angular momentum} current. The emerging Poincar\'e gauge (theory of) gravity, starting from the viable Einstein-Cartan theory of 1961, will be shortly reviewed and its prospects for further developments assessed.Comment: 46 pages, 4 figures, minor corrections, references added, contribution to "One Hundred Years of Gauge Theory" edited by S. De Bianchi and C. Kiefe

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF
    corecore