44 research outputs found

    High Antipredatory Efficiency of Insular Lizards: A Warning Signal of Excessive Specimen Collection?

    Get PDF
    We live-captured lizards on islands in the Gulf of California and the Baja California peninsula mainland, and compared their ability to escape predation. Contrary to expectations, endemic lizard species from uninhabited islands fled from humans earlier and more efficiently than those from peninsular mainland areas. In fact, 58.2% (n = 146) of the lizards we tried to capture on the various islands escaped successfully, while this percentage was only 14.4% (n = 160) on the peninsular mainland. Separate evidence (e.g., proportion of regenerated tails, low human population at the collection areas, etc.) challenges several potential explanations for the higher antipredatory efficiency of insular lizards (e.g., more predation pressure on islands, habituation to humans on the peninsula, etc.). Instead, we suggest that the ability of insular lizards to avoid predators may be related to harvesting by humans, perhaps due to the value of endemic species as rare taxonomic entities. If this hypothesis is correct, predation-related behavioral changes in rare species could provide early warning signals of their over-exploitation, thus encouraging the adoption of conservation measures

    Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    Get PDF
    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts

    Medical follow-up for workers exposed to bladder carcinogens: the French evidence-based and pragmatic statement

    Full text link

    Devensian Late-glacial environmental change in the Gordano Valley, North Somerset, England: A rare archive for southwest Britain

    No full text
    The Late-glacial and Holocene environmental history of the Gordano Valley, North Somerset, UK has been reconstructed using pollen, sediment particle size and mineralogical analyses and radiocarbon dating. A Devensian sediment ridge across the valley confined the waters of a small lake, within which the initial sedimentation was minerogenic. Radiocarbon dating of overlying organic-rich deposits suggests that this began late in the Dimlington Stadial c. 18,000-15,000 Cal. BP. Petrographic analyses indicate the minerogenic sediments were partly wind-blown in origin. Climatic amelioration during the Windermere Interstadial c. 15,000 Cal. BP encouraged a shift from minerogenic to biogenic sedimentation. A brief return to minerogenic sedimentation between c. 10,400 and c. 9,520 Cal. BP was followed by uninterrupted fen peat accumulation throughout the Holocene. The later minerogenic horizon appears to represent the Loch Lomond Stadial. Few stratigraphic sequences preserving the complete Devensian Late-glacial-Holocene transition exist in southwest Britain, making the sedimentary archive of the Gordano Valley valuable regionally for reconstructing Late-glacial climate change. © 2007 Springer Science+Business Media B.V
    corecore