21 research outputs found

    Project Report No. PR640-02: Optimal grazing management to enhance soil biodiversity and soil carbon in upland grassland

    Get PDF
    Here we report on a project instigated by and co-designed with a group of livestock farmers in Wales who wanted to know more about the health and sustainability of their grassland soils. The core aim of the project was to enhance the sustainability and resilience of livestock production relying on grassland whilst maintaining ecosystem services such as carbon sequestration and biodiversity provision. Soil carbon and nitrogen content and soil biodiversity measurements were obtained to determine whether these were being impacted by grazing management. The farmers were interviewed to determine the role of soil health in decision making as well as how best to communicate complex science evidence

    Structure and functions of the ventral tube of the clover springtail Sminthurus viridis (Collembola Sminthuridae)

    Get PDF
    YesSpringtails (Collembola) are unique in Hexapoda for bearing a ventral tube (collophore) on the first abdominal segment. Although numerous studies have been conducted on the functions of the ventral tube, its fine structure has not been thoroughly elucidated to date. In this paper, we observed the jumping behavior of the clover springtail Sminthurus viridis (Linnaeus, 1758) and dissected the ventral tube using light microscopy to elucidate the fine structure and the possible function of the ventral tube. The results show that a pair of eversible vesicles can be extended from the apical opening of the ventral tube. The eversible vesicles are furnished with numerous small papillae, and can be divided into a basal part and a distal part. The eversible vesicles have a central lumen connected to the tiny papillae and leading to the body cavity. The eversible vesicles can reach any part of the body, and may serve as following functions: (a) absorbing moisture; (b) uptaking water; (c) cleaning the body surface; and (d) fastening the body on a smooth surface

    Mutagenesis-Mediated Virus Extinction: Virus-Dependent Effect of Viral Load on Sensitivity to Lethal Defection

    Get PDF
    Background: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. Results: The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. Conclusions: (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development. © 2012 Moreno et al.Centro de Biología Molecular Severo Ochoa; Ministerio de Ciencia e Innovación (MICINN); Fundación Ramón ArecesPeer Reviewe
    corecore