38 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Sistema auxiliar de bombeamento de solução nutritiva em cultivos hidropônicos de hortaliças Auxiliary pumping of nutrient solution for hydroponic culture of vegetables

    No full text
    O sistema de hidroponia mais utilizado consiste em cultivar plantas em calhas ou outros contentores por onde circula a solução nutritiva de forma intermitente. Este processo exige disponibilidade permanente de energia elétrica para o bombeamento de solução nutritiva, podendo ocorrer grandes perdas no caso de falhas prolongadas no fornecimento elétrico. Foram avaliados dois sistemas auxiliares de bombeamento. Em um deles, a circulação da solução é feita por força de ar comprimido que, por controle de nível com bóia elétrica e acionamento de válvulas pneumáticas, permite realizar diversos ciclos de circulação da solução nutritiva com o ar acumulado no cilindro do compressor. O outro sistema consiste em um conjunto de motobombas que funcionam com energia de 12 volts, acumulada em baterias abastecidas por carregador. O sistema para testes foi composto por um compressor de 1 cv com cilindro de ar de aproximadamente 45 L e dois reservatórios de solução, sendo o inferior com capacidade de 60 L, que permite a pressurização. Especificamente para o compressor utilizado obteve-se em média, quatro ciclos de transferência de solução por cada carga do compressor cheio e desligado. O volume total de solução movimentada por cada carga do compressor foi de 200 L, o que corresponde à movimentação de aproximadamente 5 L de solução por litro de ar comprimido. O outro sistema consiste de três motobombas de 12 volts, modelo 500 gph com capacidade de recalque de 1890 L h-1 e consumo de 2,5 ampér h-1, acionadas por uma bateria automotiva. O conjunto funcionou, em média, durante 3 horas e 20 minutos para cada carga da bateria. O volume de solução movimentado foi de aproximadamente 500 L h-1. Com os parâmetros obtidos é possível dimensionar os sistemas de bombeamento auxiliar de acordo com o volume de solução a ser movimentado e com o intervalo de segurança que for conveniente, pois existem no mercado inúmeros modelos de compressores de ar, baterias automotivas de várias capacidades de carga e vários modelos de motobomba de 12 volts.<br>The most usual hydroponics system consists of plant cultivation into gutter pipe or other containers through which the nutrient solution circulates intermittently. This system requires continuous electricity supply for pumping nutrient solution, so it is highly vulnerable to prolonged failures in the electricity supply. Two auxiliary systems were evaluated for pumping. In one, the solution movement is promoted by compressed air. The electric buoys and pneumatics valves controllers perform several cycles of nutrient solution, using the air accumulated into the cylinder's compressor. The other system consists of a set of 12-volt pumps fed by batteries which are supplied by a charger. The tested system had a compressor with a motor of one hp, a cylinder of 45 L, and two solution tanks. One tank had 60 L, which allows pressurization. Specifically for the used compressor, it was obtained, on average, four cycles of solution transference for each full cylinder of the compressor, without electricity. The total volume of solution transference for each cylinder was 200 L, which corresponds to the movement of approximately 5 L of solution per liter of compressed air. The other system consists of three 12-volt pumps model 500 gph with capacity for 1890 L h-1 of liquid transference and consumption of 2.5 amps h-1, supplied by an automotive battery. The set worked, on average, for 3 hours and 20 minutes for each battery charge. The volume of pumped solution was approximately 500 L h-1. With these parameters it is possible to make projects of systems for auxiliary pumping according to the volume of solution to be pumped and the convenient intervals, since there are many models of air compressors, automotive batteries, chargers and 12-volts pumps

    Influence of the N/K ratio on the production and quality of cucumber in hydroponic system

    Get PDF
    The objective of this work was to evaluate the quality of fruits and the nutritional status of cucumber CV. Aodai cultivated in nutrient solutions with different N:K ratios. The hydroponic cultivation was initially performed, during the vegetative growth, in nutrient solution with 1:2.0 mmol L-1 N:K, and, later, during fruit setting, in four different nutrient solutions with N:K (w/w) at the ratios 1:1.4, 1:1.7, 1:2.0 and 1:2.5. An additional treatment with a nutrient solution containing the ratio 1:2.2 (w/w) N:K during the vegetative growth and N:K 1:1.4 (w/w) during fruit setting, both with 10% ammonium (NH4+) was included. The treatments were arranged in a randomized design with six replicates. Irrigation was carried out with deionized water until seed germination, and then with nutrient solution until 30 days after germination, when plants were transplanted. Plants in the hydroponic growing beds were irrigated with the solutions for vegetative growth, and, after 21 days, the solutions were replaced by solutions for fruit setting. At 45 and 60 days after transplanting, the fresh weight, length, diameter, volume and firmness of the fruit were evaluated, and, at 45 days after transplanting, the macronutrient concentrations in the leaves were determined. The use of different N:K ratios during fruit setting influenced the cucumber production. The ratio of 1.0:1.7 N: K (w/w), with 10% of N in the form of ammonia, is recommended for the whole cycle

    Growth and production of nasturtium flowers in three hydroponic solutions Crescimento e produção de flores de nastúrcio cultivado em hidroponia com três soluções nutritivas

    No full text
    This experiment was carried out during April to August 2003 in a greenhouse at the Universidade Federal de Santa Maria, Rio Grande do Sul state, Brazil. The growth and production of nasturtium flowers (Tropaeolum majus) in hydroponics NFT system was typified. Treatments were displayed in a 3x11 factorial, with six replications, in entirely randomized experimental design, and were composed of three nutrition solutions and 11 assessment dates. Each plant was separated between aerial part and root for the evaluation of dry mass. The blossoming started 49 days after the transplant (DAT). The plants presented good development in hydroponics, as well as growing dry mass, stature, leaf area and IAF, during the cycle. The culture's growth rate presented larger accumulation of leaf mass from 49 DAT on, in linear relation. Biological productivity was adjusted to a 2nd degree equation. Nutrition solutions did not show statistical differences, however, Furlani (1997) solution was the most reasonably priced.<br>Com o objetivo de caracterizar o crescimento e produção de flores de nastúrcio (Tropaeolum majus) em hidroponia, no sistema NFT, conduziu-se um experimento em casa de vegetação da Universidade Federal de Santa Maria, de abril a agosto de 2003. O experimento foi um fatorial 3x11 com seis repetições, em delineamento experimental inteiramente casualizado, sendo os tratamentos constituídos de três soluções nutritivas e 11 datas de avaliação. Dividiu-se cada planta em parte aérea e raiz para avaliação da fitomassa seca. A floração iniciou aos 49 dias após o transplante (DAT). A planta apresentou bom desenvolvimento em hidroponia sendo a produção de fitomassa seca crescente durante o ciclo, bem como a estatura, a área foliar e o IAF. A taxa de crescimento da cultura apresentou maior acúmulo de fitomassa a partir dos 49 DAT com relação linear. A produtividade biológica ajustou-se a uma equação do 2º grau. As soluções nutritivas não apresentaram diferença estatística entre si, porém na análise de custo a solução Furlani (1997) foi a mais econômica
    corecore