255 research outputs found

    Solar Wind Sails

    Get PDF

    Full Kinetic Analysis of Small-scale Magneto Plasma Sail in Magnetized Solar Wind

    Get PDF
    Abstract: Magneto Plasma Sail (MPS) is spacecraft propulsion that produces an artificial magnetosphere to block solar wind particles, and thus imparts momentum to accelerate a spacecraft. In the present study, we conducted three-dimensional particle-in-cell simulations on small-scale magnetospheres to investigate thrust characteristics of MPS, in which the magnetosphere is inflated by an additional plasma injection. As a result, we revealed that finite thrust generation and the increase in thrust is obtained in the small-scale magnetosphere even if the electron kinetics is taken into consideration. The thrust of MPS (0.58 mN @ magnetic moment M=1.3 10 7 Wb·m) becomes up to 97 times larger than that of the original magnetic sail (6.0 µN). It was also revealed that the thrust gain of MPS (thrust of MPS / (thrust of magnetic sail + thrust of plasma jet)) is more than unity (up to 5.2). However, the relation of trade-off between specific impulse, thrust-mass ratio and thrustpower ratio is revealed and the optimal design of the spacecraft and missions are required for the realization of MPS. Nomenclatur

    Propulsive Performance and Heating Environment of Rotating Detonation Engine with Various Nozzles

    Get PDF
    Geometric throats are commonly applied to rocket combustors to increase pressure and specific impulse. This paper presents the results from thrust measurements of an ethylene/gas-oxygen rotating detonation engine with various throat geometries in a vacuum chamber to simulate varied backpressure conditions in a range of 1.1–104 kPa. For the throatless case, the detonation channel area was regarded to be equivalent the throat area, and three throat-contraction ratios were tested: 1, 2.5, and 8. Results revealed that combustor pressure was approximately proportional to equivalent throat mass flux for all test cases. Specific impulse was measured for a wide range of pressure ratios, defined as the ratio of the combustor pressure to the backpressure in the vacuum chamber. The rotating detonation engine could achieve almost the same level of optimum specific impulse for each backpressure, whether or not flow was squeezed by a geometric throat. In addition, heat-flux measurements using heat-resistant material are summarized. Temporally and spatially averaged heat flux in the engine were roughly proportional to channel mass flux. Heat-resistant material wall compatibility with two injector shapes of doublet and triplet injection is also discussed

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present
    • …
    corecore