422 research outputs found

    Phylogenetic similarity of aerobic gram-negative halophilic bacteria from a deep-sea hydrothermal mound and Antarctic habitats

    Get PDF
    Deep-sea halophilic strains, 4 halomonads and 1 pseudoalteromonad, were isolated from high-temperature hydrothermal fluids of the TAG hydrothermal mound in the Mid-Atlantic Ridge. Two of the TAG halomonads were closely related to Antarctic halomonads based on 16S rDNA sequences (1350bp). Subhydrothermal vents and Antarctic terrains are known to provide high-salinity habitats for halophilic life. The TAG-Antarctic halomonad kinship indicates the wide distribution of halophiles over globally distant habitats, regardless of large differences in temperatures of the habitats. This suggests that microbial eco-physiology in Antarctica (and sub-hydrothermal vent), which has been studied in terms of temperature adapation, may be complemented by halotolerance and halophilism studies

    4.Rocks and minerals

    Get PDF
    Frontier Research Program for Subduction Dynamics, Japan Marine Science and Technology CenterFrontier Research Group for the Deep Sea Environment, Japan Marine Science and technology center東京大学Editor : Tazaki, Kazue, Cover:Scanning electoron microscopic photograph of Gallionella sp. in biomats of Aso caldera, Kyusyu, Japan. Various shapes of Gallonella sp. are shown (image:Moriichi, Shingo).COE, 金沢大学 水・土壌環境領域シンポジウム「地球環境における微生物の役割」, 日時:2002年12月4日(水)13:00~, 場所:金沢大学理学部3階第一実験

    Submersible study of an oceanic megamullion in the central North Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2001. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 106, no. B8 (2001): 16145–16161, doi:10.1029/2001JB000373.Recently discovered megamullions on the seafloor have been interpreted to be the exhumed footwalls of long-lived detachment faults operating near the ends of spreading segments in slow spreading crust. We conducted five submersible dives on one of these features just east of the rift valley in the Mid-Atlantic Ridge at 26°35′N and obtained visual, rock sample, gravity, and heat flow data along a transect from the breakaway zone (where the fault is interpreted to have first nucleated in ∼2.0–2.2 Ma crust) westward to near the termination (∼0.7 Ma). Our observations are consistent with the detachment fault hypothesis and show the following features. In the breakaway zone, faulted and steeply backtilted basaltic blocks suggest rotation above a deeper shear zone; the youngest normal faults in this sequence are interpreted to have evolved into the long-lived detachment fault. In younger crust the interpreted detachment surface rises as monotonously flat seafloor in a pair of broad, gently sloping domes that formed simultaneously along isochrons and are now thinly covered by sediment. The detachment surface is locally littered with basaltic debris that may have been clipped from the hanging wall. The domes coincide with a gravity high that continues along isochrons within the spreading segment. Modeling of on-bottom gravity measurements and recovery of serpentinites imply that mantle rises steeply and is exposed within ∼7 km west of the breakaway but that rocks with intermediate densities prevail farther west. Within ∼5 km of the termination, small volcanic cones appear on the detachment surface, indicating melt input into the footwall. We interpret the megamullion to have developed during a phase of limited magmatism in the spreading segment, with mantle being exhumed by the detachment fault <0.5 m.y. after its initiation. Increasing magmatism may eventually have weakened the lithosphere and facilitated propagation of a rift that terminated slip on the detachment fault progressively between ∼1.3 m.y. and 0.7 m.y. Identifiable but low-amplitude magnetic anomalies over the megamullion indicate that it incorporates a magmatic component. We infer that much of the footwall is composed of variably serpentinized peridotite intruded by plutons and dikes.B. Tucholke's research was supported by NSF grant OCE-9503561 and by an award from the Andrew W. Mellon Foundation Endowed Fund for Innovative Research and the Henry Bryant Bigelow Chair in Oceanography at Woods Hole Oceanographic Institution. G. Hirth acknowledges support by NSF grant OCE-9907244

    Geochemistry at DSDP Hole 57-439

    No full text
    Acidic to intermediate volcanic rocks were obtained as boulders, pebbles, and clasts with intercalated matrix sediments near the Japan Trench. A 47.5-meter conglomerate bed unconformably overlies acoustic basement consisting of Upper Cretaceous siltstone and is overlain in turn by massive coarse-sandstone and siltstone beds with many fossil mollusks. The volcanic cobbles and boulders in the conglomerate show pronounced porphyritic texture. Their phenocrysts are plagioclase, hornblende, and biotite; the groundmass consists of plagioclase, K-feldspar, quartz, iron oxide, and altered interstitial glass. The Plagioclase content of these volcanic rocks is very high, whereas iron oxide minerals are rare. The chemical composition of these volcanic rocks was analyzed to determine the rock series. Matrix sediments were also analyzed chemically, and their chemical composition was found to be similar to that of volcanic rocks, except for a lower CaO content. SiO2 content of the volcanic rocks ranges from 60.23 to 73.90, corresponding to that of andesite to rhyolite. All the samples show extremely high Al2O3 content, which reflects the high amounts of modal plagioclase. These volcanic rocks belong to both the calc-alkalic and tholeiitic rock series, and the differentiation trend is controlled by fractional crystallization, mainly of plagioclase, K-feldspar, and hornblende. The assemblage of calc-alkalic and tholeiitic rock series is frequently observed in island arcs and active continental margins. These volcanic rocks are derived from the Oyashio ancient landmass, which is a slightly matured island arc

    Serpentine dominated tectonics around the southern Philippine Sea boundaries-Tectonics of Yap, Palau and Mariana Trenches-

    No full text

    Arc volcanism and rifting

    No full text

    Geochemistry and structural formulas of heavy minerals from sands and sandstones of ODP Leg 126 samples

    No full text
    Lower Oligocene to Pleistocene volcaniclastic sands and sandstones recovered around the Izu-Bonin Arc during Ocean Drilling Program Leg 126 were derived entirely from Izu-Bonin Arc volcanism. Individual grains consist of volcanic glass, pumice, scoria, basaltic or andesitic fragments, plagioclase, pyroxene, and minor olivine and hornblende. In Pliocene-Pleistocene samples plagioclase and heavy minerals in the volcaniclastic sands and sandstones are present in the following abundances: plagioclase > orthopyroxene > clinopyroxene > pigeonite > olivine. In contrast, plagioclase and heavy minerals found in Oligocene-Miocene samples occur in the following order: plagioclase > clinopyroxene > orthopyroxene > hornblende. The low concentration of Al, Ti, and Cr in calcium-rich clinopyroxenes in Oligocene to Holocene sediments suggests that the sources of the volcaniclastic detritus were nonalkalic igneous rocks. There are, however, some distinctive differences in the chemical composition of pyroxene between the Pliocene-Pleistocene and Oligocene-Miocene volcaniclastic sands and sandstones. Orthopyroxene belongs to the hypersthene-ferrohypersthene series (Fe-rich) in Pliocene-Pleistocene sediments, and the bronzitehypersthene series (Mg-rich) in Oligocene-Miocene sediments. Clinopyroxene is characterized by augite and pigeonite in Pliocene-Pleistocene sediments, and by the diopside-augite series in Oligocene-Miocene sediments. Mineral assemblages and mineral chemistry of the volcaniclastic sands and sandstones reflect those of the volcanic source rocks. Therefore, the observed changes in mineralogy record the historical change in volcanism of the Izu-Bonin Arc. The mineralogy is consistent with the geochemistry of the volcaniclastic sands and sandstones and the geochemistry of forearc volcanic rocks of the Izu-Bonin Arc since the Oligocene
    corecore