5 research outputs found

    A magnetar powering the ordinary monster GRB 130427A?

    Full text link
    We present the analysis of the extraordinarily bright Gamma-Ray Burst (GRB) 130427A under the hypothesis that the GRB central engine is an accretion-powered magnetar. In this framework, initially proposed to explain GRBs with precursor activity, the prompt emission is produced by accretion of matter onto a newly-born magnetar, and the observed power is related to the accretion rate. The emission is eventually halted if the centrifugal forces are able to pause accretion. We show that the X-ray and optical afterglow is well explained as the forward shock emission with a jet break plus a contribution from the spin-down of the magnetar. Our modelling does not require any contribution from the reverse shock, that may still influence the afterglow light curve at radio and mm frequencies, or in the optical at early times. We derive the magnetic field (B∼1016B\sim 10^{16} G) and the spin period (P∼20P\sim 20 ms) of the magnetar and obtain an independent estimate of the minimum luminosity for accretion. This minimum luminosity results well below the prompt emission luminosity of GRB 130427A, providing a strong consistency check for the scenario where the entire prompt emission is the result of continuous accretion onto the magnetar. This is in agreement with the relatively long spin period of the magnetar. GRB 130427A was a well monitored GRB showing a very standard behavior and, thus, is a well-suited benchmark to show that an accretion-powered magnetar gives a unique view of the properties of long GRBs.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter

    The ASTRI SST-2M prototype for the Cherenkov Telescope Array: status after the commissioning phase of the telescope

    Get PDF
    ASTRI SST-2M is an imaging atmospheric Cherenkov telescope developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA) project as an end-to-end prototype for the Small Size array. Large-, medium-, and small-sized telescopes will compose the CTA observatory that represents the next generation of imaging atmospheric Cherenkov telescopes and will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope has been installed at the INAF-Catania observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. In these 3 years of open-air operations the telescope has been commissioned and its opto-mechanical performance is now well understood. The apparatus was made ready to host its main scientific instrument, the camera with Silicon-Photomultiplier based detectors. This contribution is a status report on the complete ASTRI SST-2M telescope assembly including the electro-mechanical structure and the optical system

    The ASTRI SST-2M prototype for the Cherenkov Telescope Array: opto-mechanical performance

    Get PDF
    ASTRI SST-2M is an end-to-end telescope prototype developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA). The CTA observatory, with a combination of large-, medium-, and small-sized telescopes (LST, MST and SST, respectively), will represent the next generation of imaging atmospheric Cherenkov telescopes. It will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope structure and mirrors have been installed at the INAF observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. Its performance verification phase began in autumn 2015. Part of the scheduled activities foresees the study and characterization of the optical and opto-mechanical performance of the telescope prototype. In this contribution we report the results achieved in terms of kinematic model analysis, mirrors reflectivity evolution, telescopes positioning, flexures and pointing model and the thermal behavior

    The 2009 december gamma-ray flare of 3C 454.3: The multifrequency campaign

    Get PDF
    During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F 2000 × 10 -8 photons cm-2 s-1 for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting 1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states. © 2010. The American Astronomical Society. All rights reserved

    ROS2: a multichannel vision for the robotic REM telescope

    No full text
    During 2013, a new visible camera has been finally installed and tested at the 60cm, robotic REM telescope in the la Silla Observatory. REM is an Italian, fast-reacting telescope initially designed and built for the immediate response to GRB automatic alerts, but since the first light in 2003 its usage has been covering a wider range of astronomical interests. While the IR camera REMIR was reaching the expected limiting magnitudes, the original ROSS visible camera suffered, since the beginning, of a rather poor performance. We set therefore to implement a newer optical camera, leading to the design, tests and integration of ROS2, a dichroic-based four channels imaging camera. The four Sloan-like pass bands are imaged, at the same time, in four quadrants of the CCD, an Andor multilevel Peltier detector. The tests during the science commissioning show an impressive improvement in the limiting magnitudes, reaching two magnitudes fainter than ROSS. Here we show the concept, the tests and the user level product we are now offering at REM
    corecore