8,389 research outputs found

    The Use of Bone Morphogenetic Protein in the Intervertebral Disk Space in Minimally Invasive Transforaminal Lumbar Interbody Fusion

    Get PDF
    Study Design: Retrospective Cohort. Objective: The objective of this study was to characterize one surgeon’s experience over a 10-year period using rhBMP-2 in the disk space for minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). Summary of Background Data: MIS TLIF has been utilized as a technique for decreasing patients’ immediate postoperative pain, decreasing blood loss, and shortened hospital stays. Effectiveness and complications of rhBMP-2’s use in the disk space is limited because of its off-label status. Methods: Retrospective analysis of consecutive MIS TLIFs performed by senior author between 2004 and 2014. rhBMP-2 was used in the disk space in all cases. Patients were stratified based on the dose of rhBMP-2 utilized. Patients had 9 to 12 month computerized tomography scan to evaluate for bony fusion and continued follow-up for 18 months. Results: A total of 688 patients underwent a MIS TLIF. A medium kit of rhBMP-2 was utilized in 97 patients, and small kit was used in 591 patients. Fusion rate was 97.9% and this was not different between the 2 groups with 96/97 patients fusing in the medium kit group and 577/591 patients fusing in the small kit group. Five patients taken back to the operating room for symptomatic pseudoarthrosis, 4 reoperated for bony hyperostosis, and 10 radiographic pseudoarthroses that did not require reoperation. A statistically significant difference in the rate of foraminal hyperostosis was found when using a medium sized kit of rhBMP-2 was 4.12% (4/97 patients), compared with a small kit (0/591 patients, P=0.0004). Conclusions: Utilization of rhBMP-2 in an MIS TLIF leads to high fusion rate (97.9%), with an acceptable complication profile. The development of foraminal hyperostosis is a rare complication that only affected 0.6% of patients, and seems to be a dose related complication, as this complication was eliminated when a lower dose of rhBMP-2 was utilized

    Phononic Crystal Resonators

    Get PDF
    In this chapter we present the theory of phononic crystal, classification of PnC according to its physical nature, and phononic crystal (PnC) phenomena in locally resonant materials with 2D, and 3D crystals structure. In this chapter, phononic crystal (PnC) micro-electro mechanical system (MEMS) resonators with different transduction schemes such as electrostatically, piezoresistively, piezoelectrically transduced MEMS resonators are explained. In this chapter, we employed phononic crystal strip in MEMS resonators is explained to reduce anchor loss, and analysis of eigen frequency mode of the resonators. The phononic crystal strip with supporting tethers is designed to see the formation of band gap by introducing square holes, and improvement of quality factor and harmonic response. We show that holes can help to reduce the static mass of PnC strip tether without affecting on band gaps

    Exploring Question Decomposition for Zero-Shot VQA

    Full text link
    Visual question answering (VQA) has traditionally been treated as a single-step task where each question receives the same amount of effort, unlike natural human question-answering strategies. We explore a question decomposition strategy for VQA to overcome this limitation. We probe the ability of recently developed large vision-language models to use human-written decompositions and produce their own decompositions of visual questions, finding they are capable of learning both tasks from demonstrations alone. However, we show that naive application of model-written decompositions can hurt performance. We introduce a model-driven selective decomposition approach for second-guessing predictions and correcting errors, and validate its effectiveness on eight VQA tasks across three domains, showing consistent improvements in accuracy, including improvements of >20% on medical VQA datasets and boosting the zero-shot performance of BLIP-2 above chance on a VQA reformulation of the challenging Winoground task. Project Site: https://zaidkhan.me/decomposition-0shot-vqa/Comment: NeurIPS 2023 Camera Read

    3-Phenyl-1H-pyrrolo[2,1-c][1,4]oxazin-1-one

    Get PDF
    The mol­ecule of the title compound, C13H9NO2, is slightly twisted with a dihedral angle of 4.85 (9)° between the nine-membered ring system and the phenyl ring. The nine non-H atoms of the 1H-pyrrolo[2,1-c][1,4]oxazin-1-one system are coplanar [r.m.s. deviation = 0.0122 (2) Å]. In the crystal, weak inter­molecular C—H⋯O inter­actions link mol­ecules into chains along [10]. The crystal studied was an inversion twin with a 0.48624 (9):0.51376 (9) domain ratio

    A Spatial-Temporal Deformable Attention based Framework for Breast Lesion Detection in Videos

    Full text link
    Detecting breast lesion in videos is crucial for computer-aided diagnosis. Existing video-based breast lesion detection approaches typically perform temporal feature aggregation of deep backbone features based on the self-attention operation. We argue that such a strategy struggles to effectively perform deep feature aggregation and ignores the useful local information. To tackle these issues, we propose a spatial-temporal deformable attention based framework, named STNet. Our STNet introduces a spatial-temporal deformable attention module to perform local spatial-temporal feature fusion. The spatial-temporal deformable attention module enables deep feature aggregation in each stage of both encoder and decoder. To further accelerate the detection speed, we introduce an encoder feature shuffle strategy for multi-frame prediction during inference. In our encoder feature shuffle strategy, we share the backbone and encoder features, and shuffle encoder features for decoder to generate the predictions of multiple frames. The experiments on the public breast lesion ultrasound video dataset show that our STNet obtains a state-of-the-art detection performance, while operating twice as fast inference speed. The code and model are available at https://github.com/AlfredQin/STNet.Comment: Accepted by MICCAI 202
    corecore