31 research outputs found

    Familial hematuria

    Get PDF
    Hematuria is a common presenting complaint in pediatric nephrology clinics and often has a familial basis. This teaching article provides an overview of causes, diagnosis, and management of the major forms of familial hematuria, Alport syndrome, and thin basement membrane nephropathy

    Expression profiles of muscle disease-associated genes and their isoforms during differentiation of cultured human skeletal muscle cells

    Get PDF
    BACKGROUND: The formation of contractile myofibrils requires the stepwise onset of expression of muscle specific proteins. It is likely that elucidation of the expression patterns of muscle-specific sarcomeric proteins is important to understand muscle disorders originating from defects in contractile sarcomeric proteins. METHODS: We investigated the expression profile of a panel of sarcomeric components with a focus on proteins associated with a group of congenital disorders. The analyses were performed in cultured human skeletal muscle cells during myoblast proliferation and myotube development. RESULTS: Our culture technique resulted in the development of striated myotubes and the expression of adult isoforms of the sarcomeric proteins, such as fast TnI, fast TnT, adult fast and slow MyHC isoforms and predominantly skeletal muscle rather than cardiac actin. Many proteins involved in muscle diseases, such as beta tropomyosin, slow TnI, slow MyBPC and cardiac TnI were readily detected in the initial stages of muscle cell differentiation, suggesting the possibility of an early role for these proteins as constituent of the developing contractile apparatus during myofibrillogenesis. This suggests that in disease conditions the mechanisms of pathogenesis for each of the mutated sarcomeric proteins might be reflected by altered expression patterns, and disturbed assembly of cytoskeletal, myofibrillar structures and muscle development. CONCLUSIONS: In conclusion, we here confirm that cell cultures of human skeletal muscle are an appropriate tool to study developmental stages of myofibrillogenesis. The expression of several disease-associated proteins indicates that they might be a useful model system for studying the pathogenesis of muscle diseases caused by defects in specific sarcomeric constituents

    Biocompatibility Assessment of a New Biodegradable Vascular Graft via In Vitro Co-culture Approaches and In Vivo Model

    Get PDF
    Following the implantation of biodegradable vascular grafts, macrophages and fibroblasts are the major two cell types recruited to the host-biomaterial interface. In-vitro biocompatibility assessment usually involves one cell type, predominantly macrophages. In this study, macrophage and fibroblast mono- and co-cultures, in paracrine and juxtacrine settings, were used to evaluate a new biodegradable thermoplastic polyurethane (TPU) vascular graft. Expanded-polytetrafluoroethylene (ePTFE) grafts served as controls. Pro/anti-inflammatory gene expression of macrophages and cytokines was assessed in vitro and compared to those of an in vivo rat model. Host cell infiltration and the type of proliferated cells was further studied in vivo. TPU grafts revealed superior support in cell attachment, infiltration and proliferation compared with ePTFE grafts. Expression of pro-inflammatory TNF-/IL-1 cytokines was significantly higher in ePTFE, whereas the level of IL-10 was higher in TPU. Initial high expression of pro-inflammatory CCR7 macrophages was noted in TPU, however there was a clear transition from CCR7 to anti-inflammatory CD163 expression in vitro and in vivo only in TPU, confirming superior cell-biomaterial response. The co-culture models, especially the paracrine model, revealed higher fidelity to the immunomodulatory/biocompatibility behavior of degradable TPU grafts in vivo. This study established an exciting approach developing a co-culture model as a tool for biocompatibility evaluation of degradable biomaterials.(VLID)348920

    Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization

    No full text
    To characterize further non-vascular smooth muscle cells (NVSMC) in the choroid of the human eye, extensive morphological studies were performed including a three-dimensional distribution of NVSMC in the adult human eye and their appearance during development. Whole mounts and sections through the choroid and sclera of eyes of 42 human donors (between the 13th week of gestation and 89 years of age) were stained with antibodies against smooth muscle actin and other markers for smooth muscle cells. On the basis of their morphological localization, three groups of NVSMC could be distinguished in the adult eyes: (a) a semicircular arrangement of NVSMC in the suprachoroid and inner sclera, around the entry of posterior ciliary arteries and nerves; (b) NVSMC parallel to the vessels in the posterior eye segment between the point of entry of the posterior ciliary arteries and the point of exit of the vortex veins; and (c) a dense plaque-like arrangement of NVSMC in the suprachoroid, overlying the foveal region. The last of these groups showed most pronounced interindividual differences. During development, the first NVSMC to be observed at the 20th week of gestation belonged to group b. A complete NVSMC network was first observed in a 6-year-old donor eye. All three groups stained positive for smoothelin, caldesmon and calponin in all localizations. The NVSMC show a distinct distribution that might reflect different aspects of their function in the choroid and suprachoroid. All cells could be histochemically characterized as truly contractile

    Differential availability/processing of decorin precursor in arterial and venous smooth muscle cells

    No full text
    The existence of specific differentiation markers for arterial smooth muscle (SM) cells is still a matter of debate. A clone named MM1 was isolated from a library of monoclonal antibodies to adult porcine aorta, which in vivo binds to arterial but not venous SM cells, except for the pulmonary vein. MM1 immunoreactivity in Western blotting involved bands in the range of Mr 33–226 kDa, in both arterial and venous SM tissues. However, immunoprecipitation experiments revealed that MM1 bound to a 100-kDa polypeptide that was present only in the arterial SM extract. By mass spectrometry analysis of tryptic digests from MM1-positive 130- and 120-kDa polypeptides of aorta SM extract, the antigen recognized by the antibody was identified as a decorin precursor. Using a crude decorin preparation from this tissue MM1 reacted strongly with the 33-kDa polypeptide and this pattern did not change after chondroitinase ABC treatment. In vitro, decorin immunoreactivity was found in secreted grainy material produced by confluent arterial SM cells, although lesser amounts were also seen in venous SM cells. Western blotting of extracts from these cultures showed the presence of the 33-kDa band but not of the high-molecular-weight components, except for the 100-kDa monomer. The 100/33-kDa combination was more abundant in arterial SM cells than in the venous counterpart. In the early phase of neointima formation, induced by endothelial injury of the carotid artery or vein-to-artery transposition, the decorin precursor was not expressed, but it was up-regulated in the SM cells of the media underlying the neointima in both models. Collectively, these data suggest a different processing/utilization of the 100-kDa monomer of proteoglycan decorin in arterial and venous SM cells, which is abolished after vein injury
    corecore