7 research outputs found

    Combining Experiments and Simulations Using the Maximum Entropy Principle

    Get PDF
    A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges

    Coherent and Squeezed States: Introductory Review of Basic Notions, Properties, and Generalizations

    No full text
    A short review of the main properties of coherent and squeezed states is given in introductory form. The efforts are addressed to clarify concepts and notions, including some passages of the history of science, with the aim of facilitating the subject for nonspecialists. In this sense, the present work is intended to be complementary to other papers of the same nature and subject in current circulation.Comment: 50 pages, misprints corrected, some new references included. To appear in "Integrability, Supersymmetry and Coherent States. A Volume in Honor of Professor Veronique Hussin

    Thermodynamic foundations of physical chemistry: reversible processes and thermal equilibrium into the history

    No full text
    corecore