93 research outputs found

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    The Jurassic–Cretaceous depositional and tectonic evolution of the southernwestern margin of the Neotethys Ocean, Northern Oman and United Arab Emirates

    Get PDF
    The concept that the autochthonous, parautochthonous and allochthonous Permian–Cretaceous sequences in the United Arab Emirates (UAE) and Oman record the transition from platform, slope to basin sedimentation within the southern part of Neotethys has been fundamental to the interpretation of the geological history of the region. The results of a major geological mapping programme of the UAE, carried out by the British Geological Survey for the Federal Government of the UAE, coupled with the detailed examination of key sections within northern Oman has led to a re-evaluation of the geological evolution of this region. This detailed study has led to a greater appreciation of the sedimentology and depositional setting of the sediments laid down along the northeastern Arabian continental margin during the Jurassic to Cretaceous, allowing a more refined model of Neotethys Ocean basin evolution to be established. The model charts the progressive breakup of the Arabian continental margin and closure of Neotethys during the mid to late Cretaceous and is divided into three main stages: Stage 1—Initial rifting and formation of the Neotethys Ocean, followed by a prolonged period of stable, passive margin sedimentation which extended from the Permian to Late Jurassic times; Stage 2—Uplift and erosion of the shelf margin during the Late Jurassic to Early Cretaceous, coincident with increased carbonate-clastic sedimentation in the outer ramp, distal slope and basinal areas; Stage 3—Increased instability during the Late Cretaceous leading to the breakup of the platform margin and foreland basin sedimentation accompanying the obduction of the Oman-UAE ophiolite. Data obtained for the upper part of the platform and platform margin to slope successions has revealed that the topography of the “shelf”-slope-basinal margin was more subdued than previously thought, with this more gentle ramp margin morphology persisting until early to mid-Cretaceous times when the platform margin started to become unstable during ophiolite obduction. The thrust-repeated allochthonous sedimentary rocks of the Hamrat Duru Group were deposited on the outer platform margin/lower slope rise to basinal plain of this basin margin and includes the dismembered remains of two turbidite fan systems which fed carbonate-rich detritus into deeper parts of the ocean. A re-evaluation of the chert-rich sequences, previously equated with deposition on the abyssal plain of Neotethys, has led to the conclusion that they may record sedimentation at a much shallower level within a starved ocean basin, possibly in a mid-ramp (above storm wave base) to outer ramp setting. A marked change in basin dynamics occurred during the mid-Cretaceous leading to the development of a shallow ramp basin margin in Oman with terrestrial to shallow marine sedimentary rocks interdigitating with red siliceous mudstones. By contrast, the contemporaneous succession in the Dibba Zone of the UAE indicates considerable instability on a steep shelf break. This instability is recorded by the presence of several major olistostrome deposits within the Aruma Group of the UAE which are thought to have been generated in advance of the rapidly obducting Oman-UAE ophiolite

    An 8.5 m long ammonite drag mark from the Upper Jurassic Solnhofen Lithographic Limestones, Germany

    Get PDF
    Trackways and tracemakers preserved together in the fossil record are rare. However, the co-occurrence of a drag mark, together with the dead animal that produced it, is exceptional. Here, we describe an 8.5 m long ammonite drag mark complete with the preserved ammonite shell (Subplanites rueppellianus) at its end. Previously recorded examples preserve ammonites with drag marks of < 1 m. The specimen was recovered from a quarry near Solnhofen, southern Germany. The drag mark consists of continuous parallel ridges and furrows produced by the ribs of the ammonite shell as it drifted just above the sediment surface, and does not reflect behaviour of the living animal
    • …
    corecore